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ABSTRACT

Electrical networks o-nisisting of l,pvd linear and memoryless non-

linear elpm.nts and an arl.itrary number of lessless transmission lines

are considcreJ It is rhuwn that a large cla s' of such networks may be

described by a system of fuLntional-differential equations having the form

(t

where the statc cf the system at time t > 0 is repres nted by x, a point

in the space C5 (-%,0, En ) of bounded c.ntinunus functions mapping the

interval (-%Qi into En , with the compact open topology, and the function
V mapping C( (-a-,Q], En ) into En is continuous and locally Lipschitzlan.

A Lyapunov functional is presented and %se' t, obtain several theorems con-

cerr.ing the stabilit ' and instability of the equilibrium solution, x = 5,

cf the ne twork Sev-ral e-xarpIes o the theury are presented.
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Chapter I

INTRODUCTION

In this dissertation several theorems are presented which state

sufficient conditions to ensure that an equilibrium state of a nonlinear

distributed network is stable, asymptotically stable, completely stable,

or unstable. We use the name "nonlinear distributed network" to refer

to an electrical network consisting of lumped linear and memoryless

nonlinear elements and an arbitrary number of lossless transmission

lines. The technical literature abounds with such theory for lumped

nonlinear networks [1,2]; while, for linear networks, both lumped and

distributed, the problem is simply that of locating the roots of the

network's characteristic equation1 . To the author's best knowledge,

relatively little has been written concerning the more general case

of nonlinear distributed networks.

There appear to be at least two ways of obtaining stability

criteria for nonlinear distributed networks: One way is to write the

partial differential equations which govern the distributed elements

of the network and then consider as boundary conditions or constraints,

the algebraic and ordinary differential equations which arise by

IMuch has been written on methods for determining the location of
the zeros of exponential sums, that is, functions of the complex variable

n Ckz
z of the form: (z) Z Ak(z)e , where the Ak are polymomials in z,

k--O
and the Ck are constants. The characteristic equations for linear
networks containing lo .ess transmission lines are of this form. The
reader is referred to references [3,h,5,6], and especially Chapters 12
and 13 of reference [7], where further references are to be found. For
-ertain kinds of linear distributed networks, several authors have

obtained sufficient conditions to ensure that all roots of thL charac-
teristic equation have negative real parts. See, for example, (8].
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applying Kirchoffs la:ws to the lumped portion of the network. Then,

applying the Lyapunov theory for dynamical systems [9] (of which the

boundary value problem is a particular kind) stability criteria may

be obtained. This approach has been considered by Brayton and

Miranker [10]. On the other hand, one may treat each distributed

element in the network as a two-port and obtain mathematical expressions

which show the manner in which the electrical variables at the ports are

related. These relations, along with the current-voltage relations of

the lumped elements, may then be introduced into the Kirchoff's

voltage and current law equations to obtain a system of functional-

differential equations which describes the behavior of the network

(functional-differential equations are obtained because the expressions

which relate the electrical variables at the ports of the distributed

elements are functional. equations). The Lyapunov theory for functional-

differential equations may then be applied to this system to obtain

stability criteria. This second approach is the one that we shall

consider.

Functional-differential equations, and the application of Lyapunov's

second method for determining the stability of solutions of these equa:

tions, have been treated by several authors in the mathematical liter-

ature [11,12,L3]. Recently, J.K. Hale has published several theorems

[12,13] which we have found to he particularly suitable for the kind

of functional-differentia.L equations which describe a large class of

nonlinear distributod networks. We make use of three of these theoreml

in our work aiid will. ;ftate them in the next chapter.

Let us now -on;ir.tcr a imple example which will serve to demon

.;tca:e the purpose ana upe of this work. We start with the lumped
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network of Figure 1.1, vhic, ,: hn.l, at first, aasu t te linoar.

We also anume IRJC > 0. Te resistor r may be ne@tLve. Obviously,

v 0 is an equilibrium state for this network. If we vLah to dtermine

Figure I.I. A simple lumped linear network.

whether or not this is a stable equilibrium, the procedure to very

simple: we compute the value of conductance for the parallel combina-

tion of resistors; and, if it Is positive, the equilibrium is stable.

Letting g - 1/r and G - 1/R we have gI - g + G and hence our stability

criterion is: If g > -G, the equilibrium state is stable.

Let us now Adi a lostess transmits-ion line to our network, at in

Figure 1.2 where Lts Ct, and A denote, respectively, the inductance

per unit length, the capacitance per unit lengtho and the length of

the transmission line. With this modification we may find that a

a* (
I Lt ICt  l

Y(s) - V r R

Figure l..,. A simple distributed linear network.
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I.
stable equilibrium state has become unstable. For exiales let

r a -1.78, R - 1.42, C - 1/9, Lt - 81/37* C/ - /81, S - X/6. We see

that r < -R, which implies that g > -0, and therefore the equilibrium

state v - 0 ftr the lumped network of Figure 1.1 is stable. Clearly

v a 0 is also an -quillbrium state for the distributed network. We

shall now show that thit equilibrium state is unstable. Since the

network is linear, what must be shown is that there exists at least

one root of the netwnrk's characteristic equation which has a positive

real part. It Is a well-known fact [14 pp.90-94, 15 pp.262-2641] that the

zeros of the admittance Y(s) seen at the port a-b in Figure 1.2 are

roots of this network's characteristic equation. In fact, due to the

particularly simple nature of this network, these are the only roots

of the characteristic equation. The admittance Y(s) is given by the

formula

Y(1 + Zo)e' 5 - (R - Z 0 )e'1

r 6 -(R + Zoe "  +(R-.)e J
where Z + ,+ 2.19 and i at V Lt Ct = Now, Y(s)

has zeros at approximately s . + j1: +111
+ A)

I. k~.6e1 ~ 12- 6( + j]') - + ( I + j i')  +  f
L 3.6ieL 1 + 0.77e- 12 J

= - 0.561 + 0.056 + jo,11i + 0.457C 1.104 jo.24 4]

(-o.561, + 0-05e + o.5) ± J(o..11 - 0111)

.0

?hus, for the ditrin~tuu networK, the equilibrium state v r. 0 is unstable.
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It need not always happen that the addition of lossless trans-

mission lines to a lumped network with a stable equilibrium state causes

the resulting distributed network to have an unstable equilibrium. In

particular, if C u 1 in our example, both the lumped and distributed

networks have stable equilibria v = 0. It is obvious that changing

the capacitor's value has no effect on the stability of the lumped net-

work. For the distributed network, however, all of the zeros of Y(s)

now have negative real parts. This fact is proved in Appendix A.

It is interesting to note that if the lumped network of Figure 1.1

has an unstable equilibrium then the distributed network of Figure 1.2

also has an unstable equilibrium. That is, the addition of a lossless

transmission line to our lumped network, when it is unstable, cannot

make it stable. This fact is proved in Appendix A.

The stability criterion for the linear lumped network of Figure 1.1

may be expressed graphically as in Figure 1.3a. A straight line is

drawn in the i-v plane (whery i ind v denote, respectively, the current

± --v i-k (R,Z 0 )v
i i

.b.

SableSal

V V

(a. nstsab1ab1 b.

Figure 1. 5. Stability criteriz for lumped and di~tributed network-.
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through and the voltage ncross the resistor r) whose locntion is deter-

mined by the parameter R (G - l/R). This line and the line v = 0 livide

the plane into two regions. If the i-v curve of the resistor r (which

in our case is the straight line i = gv) lies in the region which is

labeled "stable", then the network of Figure 1.1 has a stable equilibrium

state v = 0. If the i-v curve of the resistor r lies in the region

labeled "unstable", then the network of Figure 1.1 has an unstable equi-

librium state.

Some of the stability criteria which we shall derive will be similar

to this simple criterion. When our theory is applied to the distributed

network of Figure 1.2, two lines are determined in the i-v plane. The

position of these lines depends only on the parameters R and Z • These
0

lines, together with the line v = 0, divide the plane into three regions

as shown in Figure 1.3b. We allow the resistor r to have, in fact,

almost any reasonable (nonlinear) i-v curve. Our results are (in part):

1) If the i-v curve for the resistor r lies in the region labeled

"stable" in Figure 1.3b, then the equilibrium state v - 0 for the distrib-

1
uted network of Figure 1.2 is completely stable

2) If the i-v curve for the resistor r lies in the region labeled

"unstable" in Figure 1.3b, then the equilibrium state v - 0 for the distrib-

uted network of Figure 1.2 is unstable.

5) If the i-v curve of the resistor r lies in the remaining region of

Figure 1.3b, then it is uncertain whether or not the equilibrium state

v = 0 for the distributed network of Figure 1.2 is stables

1Complete stability, sometimes referred to as asymptotic stability
in the large, is asymptotic stability where the region of asymptotic
3tability is comprised of all. the points from which a motion, or trajectory,
may originate [16 p. 8, 1.7 pp-56-6 6 ].
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Several important features of our results should be emphasized at

this point. The following re-mmrks refer particularly to our exaple

they apply, however, for the most part, to all networks which are members

of the rather large class for which the theory is applicable. First of

all, since our aystem is nonlinear, it is sinificant that the theory can

guarantee complete stability. If the system were linear it would be

satisfactory to guarantee only asymptotic stability since linearity

would then imply complete stability. Since all systems, however, arfe

to some extent nonlinear, it is really complete stability (or at least

asymptotic stability with some knowledge of the extent of asymptotic

stability) that is needed for practical applications [17 P.571. Next,

we should not be too surprised to find that there exists a region in

the i-v plane for which the stability question is left unresolved. The

criteria are based upon a knowledge of only the values of the resistor

R and the characteristic impedance Z0 . In the numerical example it was

found that, with all other parameters fixed, a network could be made

stable or unstable by adjusting the value of the capacitor C. It is,

therefore, rather surprising that regions can indeed be found where

complete stability and instability can be assured regardless of the

value of so many parameters, e.g., C, a, I. On the other hand, it is

clear that if all of the parameter values were considered the stability

criteria that one might develop would not be nearly so easy to apply as

our results. In many instances it might be significant that our criteria

do not depend upon the length of the transmission line. For instance,

if one were designing circults which would be interconnected by trans-

mission lines, it might be important to know that the resulting network

T



would be stable reprdless ol the actual length of these lines. We should

also point out at this time that the stability and instability regions

obtained by our methods are not necessarily the best regions which might

be found. For ex-mplWe, it is obvious from physical considerations that

the region labeled "stable" in Figure 1.3b should always contain the

first and third quadrants. For certain values of R and Zo, however, the

line i w kl(R,Zo)v has positive slope. This unfortunate circumstance

does not occur in what is hoped will be the more usual situations; that

is, when the transmission line is terminated in a resistor R whose value

is somewhat close to the characteristic impcdance of the line. If, in

fact, 0.5 < R/ZO < 2.0 it turns out that the stable region will include

the first and third quadrants. Another characteristic of our results is

that the regions labeled "stable" and "unstable" in Figure 1.3b are always

contained in the corresponding regions in Figure 1.3a. This, of course,

is to be expected since, as was pointed out earlier, the theory does not

take into account the length of the transmission line. If transmission

lines of infinitesimal length were present in a network of lumped elements,

It is obvious from physical :onsiderations that the behavior of the net-

work should approximate that of the corresponding lumped network. If,

In our example, P/Z 0 . I . the regions labeled "stable" and "unstable"

in Figure 1.5b approach the correspondlirg regions in Figure 1.3a. This

i. a satisfying resu-t since, when Z R, the distributed network is0

jivalent, for most purposes, to the lumped network. Thus, our results

.bered 1) and .', atove ripply also to the lumped network If the referen,2es

c. Figures I - c) and I ::re !hanged to read Figures i. 5a and 1.1 respec-

'ively Sin,:v w,: .,,, ,wrn (In Appendix A) that when the networks oi

8



Figues .1 nd .2 ae lnea, te dstriute nevor isunstable

appy a; wl-Iwhe r s anoniner rsisor.Ourresltsbear thIs

out whenevcr R !5 Z, however, we do~ not guatrantee this property (although

It migh't ail be trtte) w~hen Rl >Z



Chapter II

LYAPMV STABILITY THDDRY FOR

FMCTIOAL-DIFF MNIAL EQUTION

In this chapter we give precise definitions of the terms which will

be used in our application of the stability theory of functional-differen-

tiol equations. Most of the terms used are standard ones in the mathe-

matical literature; see, for example, 11,18,191. We also state three

theorems of J.K. Hale [12,131, upon which much of our work is based. For

proof of these theorems the reader is referred to Hale's paper,

reference [12).

1. Basic Definitions Lnd Notation

The real n-4imensional Euclidean ipace is denoted by En , and 1llI =

(X 2 + ... + 2)1 / 2 denotes the norm of an element i in En . The elements1 Xn

in En are taken to be column vectors and x denotes the corresponding

row vector. Similarly, if M is an m . n matrix mapping En into Em then

M t denotes the transpose of M; also, JIMII denotes the norm of M, defined

by JIM]' = sup({IMxil: i . En , ,i,1 = 1 ). With the above definition for

tx]j, it can be shown [20 pp.59-60J that I!MJI f where x is the largest

eigenvalue of the matrix MtM. If i, E C En then <i,> = x1 Y1 + ... +

XnYn denotes the scalar product of i and .

If f is a function mapping a set X into a set Y then, for every

x ;_ X, f(x) denotes that point in Y into which x is mapped by f; if A

13 a subset of X then f[AJ denotes the collection of points in Y

iefined by f[AJ = (y: y v- Y, y ' f(x) for some x .o A).

We denote Ly C( (--,Oj, En ), or rometimes by C, the space of
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continuous functions mapping the interval (-o,O] into En. The topology

on C is taken to be the compact open topology. I It is fairly easy to

show (see Appendix B) that the topological space C with the compact open

topology is metrizable, with metric p defined as follows: For a fixed

real number b, 0 < b ,, I, and for a sequence of points ftk), 0 = to <

t ... < tk < tk+ < ..., with lim tk = c, define, for every c,4 in
o k"4 00

C, p( ,*) = . mk, where mk = min(bk, sup(JII(t) - -(t)JI: - tk+l < t <
k=O 2

-tk) C is a complete linear metric space. It is clear that

convergence in the compact open topology is equivalent to uniform

iThe compact open topology for C is constructed as follows: For each
subset K of (-cx,,0] and each subset U of En, let A(K,U) denote the set
of all members of C which carry K into U; that is, A(K,U) = [CP:
p C C, q[K] c U). Let the family Q of all sets of the form A(K,U), for
K a compact subset of (-00,0] and U open in E n, be a subbase for a topology
for C. The topology for C which is uniquely determined by this subbase
(that is, the smallest topology for C which contains a) is called the
compact open topology. It is denoted by c . The family of finite
intersections of members of ( is then a base for the compact open

m
topology; each member of this base is of the form n A(Ki,Ui), where

i=1
each K. is a compact subset of (-00,0] and each U. is an open subset of
En. For a complete discussion of this topology the reader is referred
to reference [21] and Chapter 7 of reference [22].

2One might hope that a norm could be defined on C so that C would be a
complete linear normed space (a Banach space)._ A natural attempt to
define a norm might be made as follows: Let ICIPII- = P(cpO) 4 P E C.
This, however.- does not define a norm, since the homogeneity 2ondition,

I = lal I I is not always satisfied. Take, for example, cp(t) = 0
for Zoo < t < -tc and cp(t) = (2/t )t + 2 for -t. < t < 0, and let a = 1/2.
Then 1I1 =-l, ut 11jaI = 1 j 1/2. That a nor i cannot be defined for
C is shon by Arens [21JCto follow from the fact that the domain of the
functions in C, (t: -- < t < 0), is not compact. The concept of a linear
metric space is a specialization of the concept of a linear topological
space. The concept of a linear normed space is a further specialization.
Fortunately, for our purposes it will be of no real consequence that
C( (-oo,0], En) is not a Banach space. See also, [18 pp. 49-50 and
pp. 396-597].,
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convergence on all compact subsets of (-.,0]; in fact, a sequence

.n q) in C if and only if for every nonnegative integer N,

max( IIn(t) - (t)l: -N < t < 0 0 -. 0 as n -.. For a given positive

constant H, we use the notation CH( (- ,0], E n ) to denote the set

((q: q E C, sup1 Ii(t)JI: -- < t < 0 ] < H . Again, we shall abbreviate

the notation to C when the meaning is clear.

Let A > - w, and let be a continuous function mapping the interval

(-a0,A) into E n . Then, for every t, -c < t < A, we denote by xt the

translation to the interval (-o,O], of the restriction of 2 to the

interval (-w,t]; that is, xt is an element of C., defined by Rt(a) =

x(t + a) for -- < a < 0. In other words, the graph of xis the graph

of x on (-CO,t] shifted to the interval (-W.,0].

If r is a real number, if f is a function mapping CH into E n , and

if x(t) denotes the derivative of x at t > r, we consider the following

autonomous functional-differential equation:

x(t) =::(t , t > r, (2-1)

Equation (2-1) is called a functional-differential equation because

each element of the vector x(t) is determined by the value of a functional

on C . We say that R(r,P) is a solution of Equation (2-1) with initial

:ondition ( C H at t = r if there exists some A > r such that !(r, )

is z, mapping from (-a0,A) into En with Rt(r, ) in C 1 for r < t < A,

r,)-- and if 7(r,Q) satisfies Equation (2-1) for r < t <A.

The concept. of' a functional-differential equation is more general

*.an that of an ordinary differential equation. Consider any ordinary

: ff.rential eqjuation, for example k(t) = 2x(t) + x 5 (t). If x~kt) is a

12



solution of this equation, the derivative of x at some point t may be

computed if one knows only the value of x at the point t. For a

functlonal-differential equation, the value of the derivative of a

solution at some point t depends upon the values that the function

x assumes over an interval for which the point t is the right-hand

end. Clearly, the concept of a differential-difference equation is

also a special case of a functional-differential equation. From this

point of view it is obvious that an initial condition for a functional-

differential equation and also the state at some time t of a system

which is governed by a functional-differential equation should be

specified by a point in some space of functions.

In a manner similar to that used for ordinary differential equations

and differential-difference equations (see references (23] and (24]),

one may prove the following existence and uniqueness theorem: If

is continuous in CH) then for any p in CH there is a solution of

Equation (2-.) with initial condition qP at t = r. If f is locally

Lipschitzian on CH; that is, if for any H1 < H, there exists a constant

L(H1 ) such that IjI(_) - f(1)fl _ L(HI)p(J) for all _j in CH with

p(cpd) < H1, p(UG) !5 HI, then there is only one solution with initial

condition c at t = r and the solution x(r,-) depends continuously upon

cp. Also, f(p) locally Lipschitzian in implies that the solution can

be extended in C until the boundary of CH is reached.

A set M in C is called an invariant set if, for any C E M there

exists a function x defined on (-0,00) with xt C M for every t in (- ,m)

and Xo cp such that, for every a in (-C,.), if x*(0o a ) is the

solution of Equation (2-1.) with initial condition x at a, then
113



x= xt for t >.
xtt

If V is a continuous functional on C H, and if i(O,) is the

unique solution of Equation (2-1) with initial condition p at t 0 0,

we define V 2 .1 )(2) and (*2-1)( )by:

( ) = ( V(ih(O, ) - V( ) ),

(1) h-+ o + h h

hi-'o+

2. Stability Theory for Functional-Differential Equations

If (c) - 6, then the solution i = 6 of Equation (2-1) is said to

be stable if for every e > 0 there exists a 6 > 0 such that cp C CH and

p(, 6 ) < 8 implies that it(O, ) exists for all t > 0, is in CH, and

P(it (O,), 5) < c for all t , 0. If, in addition, there exists a 6 > 0

such that p(cp,d) < 5 implies that xt(Oj) is in CH for all t > 0 and

(01)- 6 as t -,o, then the solution x = 6 is said to be asymp-tsymp

totically stable. If the solution x = 6 is asymptotically stable for

all H > 0 and all 5 > 0, then the solution x = 6 is said to

be completely stable. The solution 5 = 6 is said to be unstable if it

is not stable.

It should be noted that if x is a continuous function from (-,00)

to En then lim IIx(t)Ii = 0 if and only if lir p(xt,) = 0 since con-
t'4' t-,VO

vergence in the compact open topology is equivalent to uniform con-

vergence on all compact subsets of (-00,0], in particular the set (0).

Thus, defining stability, etc., in terms of the compact open topology

yicldz the desired properties.
14



We now state three theorems due to J. K. Hale [12) concerning the

stability of equilibrium solutions of functional-differential equations.

As Hale points out, these theorems generalize the results of LaSalle

(25,26) for ordinary differential equations. The proofs are also extensions

of the ones given by LaSalle and are to be found in Hale's paper. The

proofs given by Hale in [32 are actually stated for functional-differential

equations on the space C( (-r,O], En), where r is a positive real number;

however, as is pointed out in the last section of his paper, the theory

applies as well to functional-differential equations on C( (-o0,0), En).

In some places the wording of these theorems has been changed slightly;

and in Theorem 3 (Theorem 4 of Hale's paper) a trivial change has been

made in condition 1). In all of the following theorems we assume that

the function f in Equation (2-1) is continuous and Lipschitzian on CH,

for H > 0.

Theorem 1. Let C* = U C . Let V be a continuous functional on C*. If

UI designates the region of C* where V(c) < 1, suppose there exists a non-

negative constant K . IIc(0)II < K, V(q) > 0, and V(2 -1 )(cp) 0 for all

CP EU. If R is the set of all points in U where V(2-1) =0 and M

is the largest invariant set in fR, then every solution of Equation (2-1)

with initial condition in U approaches M as t-* o.

Theorem 2. Suppose f(3) = 5, and let the continuous functional V be

defined on C* = U C such that V(5) = 0. Let U Idenote that region
O<Y<0

of C* where V(p) < e. Assume that there exists K such that IIC(0)II K

for all qp E U . Let u(s) be a function, continuous and increasing on

[O,K), where u(O) = 0. If CH C U, if u(ji (O)I) < V(p), and if V( 2 - 1 )(P) < 0

for 'all CP C U , then the solution x = 0 of Equation (2-1) is stable.
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Meorem 3., suppose ?()-~and v IS a bounded continuoU3 functional 1

OilC, an. there exists u y ana± an open set U in C such that the followin,;

,cn~ditiona are voatisici:

1) v ( ) > 0 OnI U n C~V~ 0 on that part o.' tht botindary of'

2)6b9lons to the closure of U riC Y

nLRieandi thne trator on [01ac d souiO ofEutin(;)wt

bou) e (9e mean hecsre t f t Ur e Cst an th se R of)
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Chapter III

TRANSISION I.L= FUtRiV OML RU:EkSENTATION

In this chapter we shall develop several pairs of functional

equations which describe the electrical behavior or certain simple

two-port networks which contain a lossless transmission line. The

two-port netwvorks which we shall be concerned with are constructed

by connecting a resistor, either in series or in parallel, at each

end of a lousiess trkinsmission line, We consider such two-port

networks, rather than simply treating the transmission line itself

as a two-part because, if it is required that at least one of the

resistors have a finite value, greater than zero (which shall be

the case in the application of these results), then the linear

functionals which occur in our resultiag equLtions will be contin-

uous. That the functionals have this property, in fact, that the

functionals satisfy a Lipschitz condition, will be proved in the

final section of this charter.

I. The Transmission Idne

it! We define a lossiess transmission line to be a distributed

electrical. two-port network, as shkwn in Figure 5.1., which is charac-

ierized by three parameters: 1, the 1.ength of the tranjmisslon line;

C, the dlstributt!i capacitance per anit lengthi and L, the distributed

inductance per unit length We always assume .,CL > 0, It is con-

venlent to define twc -dditi,.nal parameter.-. which zmiy be used, along

witn 2, ,dIve an alternnte method of cnarater 'zlrg the line. ww-

I:fine

17



i* t-. -.--- -i-(

Figure 3.1. A typical lossless transmission line.

z is called the characteristic impedance of the transmission line and

a is the reciprocal of the line's phase velocity. We also define Y

the line's characteristic admittance, by Yo = i/Z0
If x is a point in the interval [0,2] and t is a point in the

interval (-w,Tj, for some T > -a, then at any time t and at any point

x the transmission line's voltage and current are denoted by v(x,t)

and i(x,t) respectively. Thus, v and i are real valued functions

,.ufined on the set

MT : (x,t) : o x < A, -w < t c T

Nfote that vo(t) n v(O,t), io(t) - i(O,t), v(t) = v(t,t), and i (t) =

-i(i,t). We assume that for each lossless transmission line in our

distributed networks there exist functions f£ and f2 such that

v(x,t) f (ax - t) + fj'ax + t),

i(x,' ) : - [ f1 (ax - t) - f, ax + t) J,

iB



for &11 (xt) E MT . From these equatia" we obtain:

v(O't) .f(-t) + f2lt), ( i

i(o,t) - (-t) - (t), (3-2)

v(j,aj-t) = f(t) + f2(2ai-t), (3-3)

i(j,aj-t) = - r(t) - -1 2 ?A-) ~4

1 L

From Equations (5-3) and (3-4) we find

f(t)= [ v(1, at-t) + z i(,, aA-t) ], (3-5)

and from Equation.; (3-1) and (3-2) we have

f 2 (t) ' 1 v(o,t) - zoi(o,v) I. (3-6)

Substituting Equations (3-5) and (5-6) into Equation (3-4) and

replacing t by 2al-t, then substituting Equations (3-5) and (3-6) into

Equation (5-i) and replacing t by t-al gives

v(Ot) - z i(Ot) - v(Lt-aj) - Z ki,t-aj)

and

v(Z,t) +- Zoi(I,t) -v(O,t-al) + 2ki(O't-aj)-

Thus, letting T at and recalling that i(L,t) = -i (t),

v (t) - Zoio(t) v (t-j) + z i (t- ),

Sv(t) zi(t) = vo(t-) + zoio(t-r). (5-7)

Equations (3-7) are used as the starting point in the next

section where the functional equations which govern the behavior of

the various two-portc are derived.

m m m m 19



2. The Trarnission Line Two-Ports

In this section Equation, (3-7) are used to derive the functional

equations which describe the electrical behavior at the ports of the

three two-port networks shown in Fiure 5.2. That is, for example,

o-+ +o.. -- i

at

00
(a)

0 0 =8t atI I

(b)

0 +_+i. " . -- +i

v°  v Zoalv v0 oZ

0 at G I

(C)

Figure 3.2. Transmission line two-ports

for any t C (--,T], T > -w, we will show, for the network of Figure 3.2a,

how io(t) and i (t) may be expressed as functionals whose arguments

are the functions ( of a, -= < o < 0), Vo(t+a) and v (t+a). The

resulting functional equations are:

20



For Figure 52

i0 (t)v - -- v(t) - V rrl)k vo(t -2(k+1 1.)
ZO 0 + )2 E,~

o k-o

+ Z 0(r r )k v (t

-2 + 2 (R +£O2 E ( 0 r ( (2k+]J ) Ir

£ ' Z 0
kuk

2~)- v(r 0 0 Zr v 0 ~ (t ( 2 ( ) 1+~~ V) 09+ 7

ko

v (t) kv~
R + ZO +.- 0

o k
+2 (G y )R+z Yy Z ~ )k (t -(2k.1)).,.

£ 0 10 ~ k~

y rvt) L i(t) + 2 0 ~ r~ (t -(~)r

G) + ~ Yo Y0 1 ~ ~ ~ £Ct-(k1.

y21 k v21Io (o,-(kllJr~



_ jt) + 2 (r k I(t - 2(k+1l)TA4t 0j + Yo I(o + Y0 ) 0

(oka£

YO )k io(t - ( k+1)). (5-8)
1~~~ I u

In Equations (3-8) r0 and r A are the usual reflection coefficients

at each end of the transmission lines when the Independent port

variables are set equal to zero; e.g., for Figure 3.2a, Po =

(no - Zo)/(Ro + Z.) and rI = (RI - z,)/(, + Zo). We assumefor each

network that both resistors are nonnegative and at least one has a

positive real value (hence IjI'o 2 < 1).

Equations (3-7), of course, apply to the primed variables in

Figure 3.2a. The primed variables, however, are related to the

unprimed variables by the following equations:

0S= 1OP

v v -Ri
O 0 00

v =v -Ri

Thus, Equations (3-7) may be written in terms of the unprimed variables

a6

W - Roi(t) - Zi0 (t) v (t-r) - P 1.(t-V) + Z

- pi( (t) - t V (t-) - Poio(t-r) + Zoi 0(t- ),

avn, hence, • ,.) l v (,)  l, i C - Zo
Pr) + Zi 0 o  0 + Zo

22



A' R~ + ZL A Ra +. z o t)9 j i 0 (t) 3

Raplacing t by t-v in Equations w59) e have

v v1 (t.;-) + ~ t~)

a -z
va (t -I vH-, + o' (t-c) (310

Substituting Equationa (3-10) into EqXuations (3-9) gives

(t) v- (t(H A
0~( 4. z z0  (t Z(R~ + Z 0 (-i

0 0' 0t 0 
0

1- z

v ~v (t-",)
A~(R R o+zr,)7 1

H, 0Z [() (H ]v . -z)(RI - Z)-- ;-lv.(t, 7 + 0 n 0  i (t-2i),

and hence,

0 aZ 0 o

C 0 0 0

(t 2 0t 17Va(t-,) .PPi(-')

rj-- -- -) v (t-v) + r r i (t-2iJ). (3-11)

i 0)RC oat AO

We now note that the se.co'nd of Equations ( 5-11) may be obtained

from the first by sirnpy ex2.i~anging the o and at :ubscripts on the symbols

i, v, R and F. Du~e tj tihis s-inmetry we need now consider only the first

23



9 r~~~~~ -rrIc .'Ca. for k~ 0, 1, 2,

( 01~ 1 (t-2ki) I (rl0r k~ v (t-2kT) 1 l~krk9 - (t-2(k+l)f)

-2 0O (rr)k v (t-(2k+l)-t) + (1', kC I (t-2(k+1),c);

0 o)R + 
01 o

teere, for p 1, 2,

p p

ol o. z p L. 'l'

k£ -. 0 k*o

I*0 ~ rkrk+l v (t-2(k+1))

aw 
p

0 k

kti.

(I~rl) ioi t2(kkg),

0~~~ 
~ E (t011-k2 0(t2)~

p
0 + Z 0 0

k ~o
01 0 ~

+ r,..-+ >.- P I) )



Z (Cp )k V (t-24') to y(t) + j(' )k+l V(t-2(k~l)r)

therefore,

i(t) - I V(t) + -~ k k+1
0~~~~ ~ ~ £o+Z ' )"

kno

ZO k-2 (R 0 + Zo)OR + zo) 0 r,1 ) Vt(t-(2k+i:?-)

ks-o

R 0 + zv 0 (t-2(p+l)i) + (r'r)p'l iO(t-2(p+.)ir).

UBn k+1 kc k 7.0r -r rr( )~2 - I00 0 0 +~ Z
0 0

we obtain

± (t) 2 Zir v-- (p-2rk

p

0 0 £o(-4 0 o
k-o

1 f~( 0 r )p+1 V (t-2(p+i.),) + (P1 r (t-L'(P+1)y).

Now, sinceO0(<R 0 and/or 0<It R < , and hence ilP 1  <21,

we have, if v 0  i0, VIP i I are bounded on (.-m,TI,

lrn 1 (1 Pl v (t-2-(P+.1:~ 0,
P-6R0+ Z 0 01 0
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p.IM (1,t 0,) P +
l (t-2(p+l)t) O,

and,
pU

li pY v,(t-2(k+l)-) Z(orS)k V,(t.2(k+l)r), etc.
Pk-0

converge. flence, using the syrmetry referred to following Equntion,

(s-u), we have derived the first two of Equationa (5-8). i[n=diately

following Equations ( -11) It was assumed that 1' 0 and I" 0.

We may, however, compare Equations (3-ii) with the first two of

Equations (3-8) and see that the latter are valid for all

i CIV ( I1DJ S Cl, A 1 1, 11'J < I ), provided we define

(r r ) = 1 if P C C or V A- 0. We shall mrake this definition.

The rewaining four of Equations (5-8) arc easily derived in a

a similar manner.

The Lipashitz Condition

In thiz section we provu that the functionail equations describing

the clectrical. behavior at the ports of the networks considered in

'.e last section saLlsfy a Lip:z:hitz condition provide,. that the

c-umpact open topology on C is metrized with an appropriate metric.
Enn

W'v consider the =xppinp f, ro, CH( (--,Oj, E ) into E , defined

follows: For 1 1, n.. , , let to >O s >0, T > 0,
0 U

o'/>0 aad let t t' + T k i3k -1 + 5 for k 1,

t A ic a real ;. J atrix,

26



whei tare f <I for 1,,. i, Let MI, 8r, M i d note real- V. A

m ut r i c e n . T he n, V C .C H

k ~

where ( denotes the vector

(P.(- I ), .k T n(-.n) k ) P

and similarly for k  If we consider any finite collection of two-

port networks of the type considered in the last section, the system

of functional equations describing the electrical behavior at their

ports Is of the form specified in Equation (3-12) above.

We first define the metric p with which the compact open topolog'

on C w.1l be metrized: Let a = max( 1a i 1, ... , n ), and
* (i) (i).,,z ni

choose b 0 <a < b < 1. Let t o = 0, t I > MIx(t o  s ..
* T(t) stj )  4 •

and pick T > max( T , S : 1 Ip ... , n). Let tk tk. + T

for k , 2, F, ... For i = l, ... , n, define the integers

N i [T*/ ) + 1, N /S(i + 1. Clearly, each interval

[-tk+l , -tk), for k r 1. 2, . , contain4 at least one of the points

-t and at most N' such points (for i 1, ... , n) and, similarly,k I

each s4uch interval contains at least one of the points -Si) and at

most 1; such points. If N t*- t T + 1, and
i I

>'~ ~ [(S >i) + 1, th-n Vie interval (-t,1 , Oi

contains Ni of the points -t i) anO N1  of the points -Zk ,
k k

4>N 4Q e her te Vc-Llwing notaitin.: If : .y re!,i
l'. 'r" t:.n r e:tc the greatest integer k uu. . k <r
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for i -1, ... , L. et N = max( N;, N1 , N1 iI : i-1, ., ;

then, each interval [-tk+l, -tkJ , for k 0, 1, 2, ... , contains at

least one of the points -tM and -sk and 1oK N su-!h points,k k

for i = 1, ..., n. Let the compact open top v on C be metrized

with th4 metric p defined by ( ,j) Z m , w- e ik
k=o

k

rii( b, ) up( WO )- (t) : -t*+ <_  t<_  ) ), V$ C.

We nw prove two lemmas which will be used in our r, ocedure Tor

specifying the Lipschitz constant for f.

Lem&m 1. If -t' denotes an arbitrary fixed point in one of the

intervals (-tk+1 , -t.] and if i denotes the mapping from

c (-.,ol, E ) to 0 defined , = (-t'), V e C., then

satisfies a Lipschitz condition on C with Lipschitz constant Lk

max[ -1$ 2Hb-k ]

kao-fo: Let 9, E C if ji(-t') - t bk, then

-k k- k

-: (t k ) -C-tk)I <_ k S_ P( ,) Lk P( ,) I)' k - i  -k

2H; or (since t' ) - -t')jj 5 2H), 11 {-t') -t-~l<
2Hb -k L(,)<' (,) Q.E.D.

Lemma 2. if, for k 0 0, 1, 2, ... , K, -t denotes an arbitrary fixed

k

point in the interval [-tk+1 , -tk], k denotes a real number, and 9k

denotes a mapping of C ( (--,0j, E' ) into n as described in Lemma 1, then
K

if LK = Z Jaki'Lk, where Lk iz the Lipschitz constant for each 9k
k=o

(which is guaranteed to exist, by Lenmma 1), then
K

Z ak1!(-tk) -tl :5 LK P(EP,i), V , CH*~
k zo

I2
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K x2 e:k- -O~l _

Z k J-L" )( ,) l p14,f, -Lk ,1 (.. C4. 11.k-to

It should be noted that the constants Land of Le 1 and 2
do not depend on the particular point -t' specified in the interval

[ t k+ ,  - t*
[k+1  ticj

We now specify the Lipschitz constant L for the mapping ; that
is, We deteriie the constant L such that f()-ffjj L ($,t

Ch C,.: Pick the positive integer I such that j > J-* (a/b)J <

and a -N Let Lj. 1 denote the constant specified in
TAM 2 for the sequence of mappings I() and constants ak = a k n ,

k - 0, ... ) J-l, and let So denote the Lipschitz constant specified

In Lemma I for io{ ) _= (o). Then, let L xI UI.L° .

( lf11t + jfMNf1)(J- + LJ-1 J.

Theorem. If L is specified as above then V ', c6 CH, 11?W f _
L p(PJ), where f is the mapping from C,,( (-o,OJ. E' ) to E' fined

by Equation (3-12).

proof': V& C:

?(~~ ?~)J < t?~(o)- +11142 Z Ak ?4 Z Ak

k=o k~o

HIM3 ZA k CPS M, A k_ is < lhiyi. II* ) - 1) +k~o 1--- k

k-o " k --U

AM k( -1P 1) + 1:M311-1' 'Tk'(j - i S is p($) +P * 1.1 Ik- 
k "o k k
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IMI I f I tk 11 1 11rn , A k k is k I
k=o =0

We now show that each of the tcms h t - tkI AAk ( is
Jko k--o

is le i than or equga to (I + Lj_) p(Tpi), and then the theorem is

proved.

A k E

2(tpF-t'U - *, -.4 ) )I J c ak 2i - (-t))I
kC =1kumo iftln

i-1 k=o

For each 1 1, a, , 3 a subsequence t ik J J
4j'

consisting of exactly one point =i)from each inte -
W~ (i

at Which 1 tk -t )Jj i s a maximum for all of' the (at most N)

points -tki ) in the interval. Obviously;
a 

0o

a- (-4 j s Z Jn!(-t k I-- f for 1,..,n.

o n wo

k=o fl j--

aj 1(C-tj - ;(-tk j
j~o 4'4
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For each j 0, 1, 2, ,3 one point, of the n points (-t :i1. ,n
(i

in each interval (-tk* -] at which gj -t~ ) I-t~ )II in a

n

maximum. Call it -t'. Then) ,- ~f ~~i)) -(,)f 1
k k a

1* ~-t) -( A(- 11 and henceol AZ Ak (9t -ylS~
3 nI(t (t

J-1

3=o j

+ E a3Nnh1*-t') - (-tj)I11, by Loin 2. But.. since 3 >J 0b>

3J

2HNna, a NnhI (-t') - I(-t,)I :5 a Nn2H < bj for all 3>J. Therefore

(since also a Nn < 1), 3 J> z - min(.b, SUP(IW(t ROOtI:

~t <-tj > min (b, sup(aJflnj(t) - (t)I:-t* !5 t < tj

> min [a3NnIj*-t') - (-t)Il, sup( a jNnB(t) - (t)II: -tj+S! t <-j

a NnhI.*-t) -t)t Thus, p(-,j) M >
3.0 jaiJ

Thus,

AI Ak (9-t - it k )11j5 Lj 1 P(OI) +P(CI) =(LJ- 1  1)

k=o

The~ same technique exactly proves that

k=k

U q.E.D.



Chapter IV

STATE EWJATIOI3 FOR A CLASS

OF NONLINEAR DISTRIBUM) NETWORKS

In this chapter we define the class of nonlinear distributed networks

for which our stability criteria apply. We also show that the behavior

of any network in this class is determined by a system of functional-

differential equations having the form

d(t) t > o,

where the state of the system at time t > 0 is represented by xt, a point

in the space %( (.,Ot En ), and the function Y is continuous and

locally Lipsahitzian. The form of the function 7 is also given, so

that if one selects any network from the given class it will be evident

how to construct the particular functional-differential equation which

determines its behavior. We first consider the writing of state

equations for lumped networks.

1. Lumped Networks and State Variables

Much has been wriLten cn the subject of writing state equations for

lumped networks. See, for example, references [27] through (36].

Although both linear and nonlinear networks have been considered, we

r.strict our attention, for the moment, to lumped linear networks.

Let the integer n denote the number of independent voltage and current

zource in a given linear network. We may then consider the network

to be a lumped linear n-port, containing no independent sources, with
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independent voltage and current sources connected at each port. For

most such networks it is possib.ie to deslpnmte a cert&4 n -''l2!.t!fn of

the a-port's branch voltages and currents so the "state variables" of

the network. These state variables have the pror.:rty that the voltage

across or the current through any branch of the network has a unique

representation as a linear combination of the state variables and the

independent source voltages and currents. Thus, the behavior of the

network is completely determined if the behavior of the state variables

and the independent sources is known.

Usually it is possible, and convenient, to select as state variables

the voltages across capacitors and the currents through inductors in the

n-port. We shall not dwell on the matter of when it is possible to

select such a set of state variables to characterize a given linear

network since this matter has received much attention in the literature

[27, 28, 29, 3O, 31, ,21.

When it is possible to characterize a linear network having no

mutually coupled inductors by a set of state variables as described above,

we may write the system of linear differential equations

F x(t) - A -(t) + B (t), t > o, (4-1)

where: x(t) denotes the state vector, a vector whose components are the

state variables for the network (the voltages across capacitors and the

currents through inductors); u(t) denotes the vector whose components

are the values cf the independent sources; P denotes a diagonal matrix

in which each diagonal element pii is equal to the value of the reactive

element (capacitor or inductor) corresponding to the i-th state variable.
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We note that P is a positive definite symetric' matrix. Thus, the

left-hand side of Equations (4-1) is equivalent to a vector whose

components are equal to the values of the currents through capacitive

branches and the voltages across inductive branches in the network.

The right-hand side of Equations (4-1) is the expression of these same

currents and voltages in terms of the state variables and independent

sources. Thus, the rows of the matrices A and B are composed of the

coefficients of the unique linear combinations of the state variables

and the independent sources which are equal to the corresponding

voltages and currents on the left-hand side.

In case mutual inductances are present in the n-port it may still

be possible to choose a set of state variables as specified above and

write Equations (4-1); however, P will no longer be a diagonal matrix.

For all physically realizable n-ports the values of the coefficients

of mutual inductance will be such that P will still be positive definite

and symuetric.

In case the network possesses loops which contain only capacitors

we also find that the matrix P may not be diagonal, but may be positive

dEfinite and symmetric For example, for the network of Figure 4.1

v :v 2{ CL 2  ti

Figure 4,.l.. A network with a capacitive loop.
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we may choose -(t) - (vi (t) v and write

x(t) - (}
(C1 + C (C0

The left-hand side of this equation is equivalent to the vector (i(t)mi 2(t))t.

Clearly, P is positive definite and symetric. A similar remark can be

made for networks having cut sets which contain only inductors.

In certain of the cases mentioned above, and sometimes when

dependent sources are present in the network, it is convenient to

choose an state variables linear combinations of certain branch voltages

and currents. In any event, if som set of state variables may be chosen

and Equations (4-l) written with a nonsingular P matrix then, upon multiply-

ing both sides by P-, we obtain an equivalent set of equations in the

form of Equations (4-1), with the new P matrix (the identity matrix)

positive definite and symmetric.

In addition to Equations (4-1) we may also write

- ;(t) + D (t), (4-2)

where w(t) is a vector whose elements are the remaining port variables

(those not included in U(t)), and the matrices C and D are constructed

in such a manner as to give the appropriate linear combinations of

state variables and independent sources to represent these port

variables.

If we consider a lumped linear multiport network containing no

independent voltage and current sources, and assume that at each port

one or the port variables (the port voltage and the current into the

port) is speified independently, then it may be possible to write
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Equations (4-1) and (14-2) as described above, where u(t) is the

vector whose components are the independent port variables and

;(t) in the vector containing the remaining port variables. Taking

the Laplece transform of' Equations (4-1) and (4-2) w, easily obtoin

(e) -tC(BP - A)"- 8 * D) i(s),

ALas-rn,

Ata a

Thus, if we consider the input variables to the multiport to be +he

components of the vector u and the output variables to be the

componnts of the vector w, the matrix D is the transmission matrix

for the multiport when all of its capacitors are short circuited and all

of its inductors are open circuited. If, for every pair of distinct

ports there exists a zero of transmission at s =e, then D is a

diagonal matrix.

'. A Class of' Nonllnear Ditributed Networks

Many nonlinear distributed networks may be represented as in

Fi,:.!,.e 14-2. This network consists of three main parts: One part is a

.umped linear multiport which is connected to each of the other parts

oly at its ports. The second part consists of the collection of

lossless transmission lines. This part is divided into three groups

aui explained below. Each end of* each line is connected to one of the

t .4' the linear multiport. The remaining ports of' the linear multi-

.~r. :' onnected to the .hird port of the networK, a nonlinear
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T
nonlnearLumped

T onliieer

Network wgtiport

Network -

Figure 4.2. A typical nonlinear distributed network.

The nonlinear multiport is characterized as follows: We suppose

that there are n,, ports for which the voltage is the independent

variable, and n ports for which the current is the independent variable,

and let vC and I denote vectors whose components are the values of these

port variables. Then, the remaining port variables are specified by

a nonlinear function U:

(i3o) -a(Y,) (43

We assume that.;

(Al) It is possible to specify vectors u and w, u being a vec-tor whose

components consist of one port variable from each port of the lumped

linear multiport, including the components of' and v., and w being a

3T
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vector hote components consist of the remining port variables, and a

state vector ; such that the resulting linear network may be characterized

by Equations (4wl) and (4-2), with P a positive definite eymetric

matrix, and such that there exists a zero of transmission at a - t from

each port of the lumped linear multiport to any other port at which a

trinamision line is connected, and vice versa.

For a given network, in order that the lumped linear iultiport have

the required transmisuion zeros as specified in condition (Al) above,

it mW be necessary that at certain ports a specific port variable be

assumed independent. The choice of independent port variables divides

the collection of transmission lines into three groups: One group

%ontains all of the lines which have both ends connected to ports for

which the current into the lumped linear multiport is chosen as the

independent port variable. Another group contains all of the lines which

have one end connected to a port for which the current into the multi-

port is the Independent port variable, and the othcr end connecte4 to

a port for which the port voltage is the independent variable. The

third group contains all of the remaining transmission lines, each of

whose ends is connected to a port at which the port voltage is chosen

as the independent port variable.

We let

T

cc Vo
V 3



!n Eqlutiun (4-1) and (4-i?), where and i denote ty. and n, vc",tors

(ti a n,) whose -,,;poncntr are the independent port variables at those

ports of the lumpod near ultiport to which a transmisaion ltne or the

first group is connected, etc. If x is an n-vector thea P and A Art

n X n matrices, B is an n x (n( * na + ... + n,) matrix, C is an

(n, + n, , ... * n.) x n matrix, and D is an (na + n,, + ... + n.) x

(n.* ne e * + n) matrix. We let B and C be partitioned in the

following manner:

a T11 ' ' ' 80C !ii
Ce

C , CI  C C

where B is an n × (na * n0 ) matrix, B I s an n x (nr ,...+ n0 ) matrix,

B is an n x r matrix, etc. Finall]y, we let B , be parttioned

i by columns as

a±rd lct Cr) C6 , ... , S'0  c partltioned by rows a

), 11 [C

a
C ... C

' C

B, r. 12a arx t.Fnly e e b . B6b attue

T,1 I.. n II I b II b



We also aaaume that the matrix D has the following form:

mp

w I Dr
D D D0

where DI is an (n. + nB) x (n. + n ) matrix, Dr is an ny X nr matrix,

etc. Condition (Al) above specifies that Dy D, . D. be diagonal

matrices.

dr O
D = ,etc.

r

We also assume that;

(A2) Each of the diaonal elements of D,, D6, ... , D,9 is a nonnegative

real number; and for each transmission line, at least one of the two

diagonal elements of the D matrix which correspond to the ports to which

the line is connected to the lumped linear multiport, is a positive real

number.

From Equations (4-1), (4-2), and (4-3), we obtain

We assume that:

, Tt --t
(A-*) It is possible to ulvt- Equation (4-4) :r the vector ( c, v )  as

xpl:t f411 t ion of" Gr x n some neighborhood of x 0. That is,
dO
40
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I

rI

in some neighborhood f 0, f (X : _X, En, jjIIj < H), we assume

that there exists son Plincticn V* such that

= (4-5)

We further assume that:

(A4) Equation (4-5) satisfies a Lipschitz condition in G., and U*(O) ,.

If conditions (Al) through (A4) above are satisfied for a given

nonlinear distributed network then it is a member of the class of networks

for which our stability theory applies. It is felt that most nonlinear

distributed networks that one is likely to encounter will satisfy the

above four conditions. If, however, a given network fails to satisfy

one or more of these conditions, the following techniques might still
be used to render it amenable to the application of our theory.

If D is not a block diagonal matrix with diagonal D D,, D

submatrices it may often be consistent with physical reality to

consider the presence of small "stray" reactances at the ports of the

lumped linear multiport. These reactances will have the effect of

giving the necessary zeros of transmission at s = a., The addition of

small stray reactances at those ports where the lumped linear and nonlinear

multiports are connected will always allow condition (A3) to be satisfied;

for, by adding enough strays, the matrix D I may be made to contain all

zeros, and hence PJ _ U. Finally, if the function * does not satisfy

the required Lipschitz condition it might be satisfactory to approximate

V* by some function vhich does--a polynomial, perhaps.

In our theory we consider only undriven nonlinear distributed

networks; that is, the networks are assumed to contain no independent

41
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vo',.qge and current sources. All of our networks have an equilibrium

state ;(t) a 0, and it in the stability of this equilibrium which we

study. If a netwrk contains independent sources which are conatant for

all time (bias vltages, for example), and if it has an equilibrium

state other than -1, it may still be possible to study the stability of

this equilibrium by first finding an "equivalent" network with a

corresponding equilibrium at x = O. For example, in Figure 4.3 we

have shown sucl network; this network has three equilibrium points,

i- r(v)

C (b)

c i=(E-v)/R

o - ; v

(b)

Figure 4.3. A .Lonlinear distributed network with a bias
voltage.

labeled (a), (b), and (c). We may study the stability of any of these

equilibria by considering the equivalent network, Figure 4.5a with

E . 0 and nonlinear function f described by the curve of Figure 4.3b

with the origin of the v-i coordinates shifted to the appropriate point

kdither (a), (b), or (c)).

We shall now derive the system ol functional-differential equations

Ini en describes the, bf-havior of' any network in our class

42



3. A ?unctionai.-Differential Equation

For any nonlinear distributed netwiorh in the class described abovt

we have, from Equationn (4-2), for j a1, 2, .. , n

and

v (t) Cx(t) +d

Thus, we can represent our network, as far as the behavior of the

j-th transmission line connecting the 'r and ports is concerned, by

the network of Figure 4.4a. Hence, since 0 < dr < co and/or 0 < d <

we have (using the functional equations for the transmission line two-ports)

((t)

Edd
Ij

-C~~- (t) * ()

(bc)

Figr '.'. ~uia~et ~etorz1 0nct. Vctp.a rz~ir
E143



1(t)-) c ;(t) +2p~ pkc C;(t -2(k+l)lrj rTr YTkTJ r

S(t) - -xt C~ x(t) + 2bit pj k C~ ;(t 2(k+2)T
J knO

+ 2t Cr ;(t -(2ki~)lt)

where we have defined

+ d + Z

0ort J, z r r

Ir (r 2)YC - 2)e

dr + 0(d +

and d 0

Prjp~j rj r i=(±T+Zor1+)(:0J

Similarly, for j 1, 2, .. , n ft we have

v (t) c cX(t) + C.6()



i

and
t!d i (t) c X(t) + d vj (t).

Tha ,, vL can represent our network, as far as the behavior of the J-th

transmission line connecting the b and n ports il concerned by the network

of Figure 4.4b. Hence, since 0 < dtj < = and/or 0 < dqj < w, we have

00
i(t) = - 6 () 2 bj P 05Csj(t - 21)

a@.

72t) + 2P - k c ;(t2(k+) )K-
+ 2v~j x t + P n 8 -0rlj~ t) (t - ( t - (kl)

k0

+ 2V k (t - (2k~l)fJ
3k=0

where we have defined

=j 1J = 1
b + Z0  'j d +Ya r1.1j °%tIj

0 TI. j -Y0bn

Zo 2'P 2 '
(d b + d qZ )2 jY + 0

5 jj (db + Z )(d j + Y 0 '

and

45



" nj sjr j "dao Zoo/ .YO d q',,

Similarly, for J -I, 2, ... , n , we have

i£ (t) C C ;(t) + dCvC (t),
J

and

i (t). ce;(t)+ dve (t).

Thus, we can represent our network, as far as the behavior of the J-th

transmission line connecting he c and e ports is concerned by the network

of Figure 4.4c. Hence, since 0 < d < - and/or 0 < de < we have

vc (t) C - (t) + 2s -o k C (t - 2(i+1)i

+ 2 C i(t - (2k+l)i )
k=OO

g00(t)~ Cee + -4 ( 2(k+l)r 0

+ 2 o ej c (t - (2k+l)e).

where we have defined

:j + Y d + Y
• d j 66 d -Y
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ir u Lj
,E Tj + e (ye + Y

-y

0 (d ' -o j (a j j ° e~j

and

Cj ~I

PCj PS j =  ej = YOj +d y oe'+' doj

Thus, if we let 2 = TIr 2 , , r. n 82 " " ,e ,
and define 9' = ( on a as .ollows:

to for rj (j 1, 2, . rn

to =  j for t = 8. ( = , , .,n

for c (0 I, 2, ... , n =

t = r for 0= (j=,2, .. n,

= for t = Tj (J - 1, 2,, n n

= C for t Gj (j 1, 2, .. , ne

we have

vLB8.. B~ ~ Z [-~ec~;()
v 9 

4



2 f p hBC X(t - 2(k+l))

k0

+ 2 ,vs 1 x(t - (2k+ 1)r

kO

Substituting the above equation and Equation (4-5) into kuation (4-1),

we obtain

Px(t) Qt) + B 6*(C (t)) - X Qlx(t)

+ 2Z jo~ 3(t -2Ck~l)lr I

+ 2 i pN N;(t - (2k+l) ), (4-6)

p"U k.O

where we have defined, for tc ,

Qt a X tB aCI,' M t B 9CV N I I ,B IC.

Multiplying each side of Equation (4-6) by P-1 (which exists since P

is positive definite, by condition (Al)) yields a functional-differential

equation of the desired form which describes the behavior of the network.

4. The Lipschltz Condition

It is easily shown that the right-hand side of the functional-differential

t:quation which describes the behavior of any network in our class satisfies48[



a Lipschitz condition on C it If we let xt be a point in CH, then by

Lemma I of Section 3-3, the mapping f from C. " X deflned by ?(; ) JtHi n t

it(O) = ;(t), satisfies a Lipschitz condition. Thus, so does the mapping

P. defined by a PQ1A(t), since if there exists L such that j(@(O)-#(O)U

( r) r every , . iU then 9V _A(O) - P!'A*(o)) CPA^#(0)-*(O)ll

<_ (tp'IA.L)h( ,). Also, the mapping T(;t) 9 V*(C i(t)) satisfies a

Lipschitz condition, by condition (A), and hence so does the mapping

,(;t) r elBIP*(Cx(t)). Finally for each j, the mapping fI of CH into

En defined by

4 2P'1 I4 Z p1Ink i(t - 2(k+l)rh )

k=O

* 2P-i( Z'piIn/k X(t - (2k+l)i)

has the form of Equation (3-12), which has been shown to satisfy a

Lipuchitz condition. Thus, a simple application or the triangle inequality

shows that the mapping f f A +  I + E "f which is the right-hand

side of our functional-differential equation, satisfies a Lipschitz condition.
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CAptar V

STABILITY Or NCMf DIXB21UUTD NNM)0

It is obvious that x - 0 is an equilibrius solution of the functional-

differmntial equation which describes th. behavior of any network in the

class of nonlinear distrtibutnd networks deftne in the previous chapter.

In this chapter we state and prove several theore*mw a erning the

stability and instability of this equilibrium solution. Ve use the same

notation as in Chapter IV and consider our distributed networks to be

characterized by Equation (I4-6), vith ;t E CM.

1. A Iya1pnov Functional

Before defining our Lyapunov functional, V, we shall prove several

useful lemas.

Leea 1. If A is an n x m matrix and if B AA t , then HBII - 0 if

and only if A - 0.

Proof. ("If") Proof of this part is trivial. ("Only if") Since B is

symmetric there exists a nonsingular matrix P such that PFBP a A, where

A.is a diagonal matrix whose diagonal elements are the eigenvalues of B.

Since B is positive semidefinite all elements of the main diagonal are

nonnegative; but since tIBIl - 0, all elements of the main diagonal are,

in fact, zero. Thus, A a 0 and hence, B w PAP- 0. if 1j represents

the element of B in the i-th row and j-th column, and similarly for A,

mm
Bin. Z AikAik.

In particular, for i - 1, ..., n, B1 l - A and hence, for k u 1, . , r,
k-I

Aik O. Thus, A 0 . Q.E.D.
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Lemm r" If A, 0, and , are any real numbere. such that A > 0 and

H < 1, and x and y are arbitrary n-vectors, then the folloving inequihty

holda:

k < x , Y" for k 0 , 2,

Proo: By the Schwarz inequality,

but for any x, y, (1i;i " hlyl) > 0 and hence,

II II 2

Therefore,

und hencV, _ +

k-k k

+.Qx,Ay -Y. .jAY,Ay< ',

-:k x,y, -A AI Ksy~y> ' A v('I .).

4..........,. .

.. i,.51
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., x. 7;- Aik .'(,y- -~ - - i ,;

'o r k , 1, 2, . .

Proof: With only a few sign rhanges, the proof i identical to that

We now define a Lyapunov functional V on C* 3C ' For each tcU

let a and b denote fixed nonnegatlve real numbers, the values of which

will be chosen later. For ht > 0, defin the func-thma] V fr every

in CH( (-,0], En ) by

-2k-r

v(I) = k@t.(o) P (0) +- aZIpk f t( )_(o)do

V M 9 1 30) CPO +t o a(o a. (C-

I C-14 k = O Cp= - (2 ( k + l ) )t

+b a)(a) o + td(C
Ib[J T(~~o do + pl fq c

O -I E ~k=O =((I)l-

Along a trajectory of our system we have

t-2ki~
) ~ (a~r-t)+piK t() X(O)do

k=O o- t-2(k+ i)

b t +0Z0 k+ t(2I)

b f (o) x(O) do + (0) X(O) do
o=t- .T k=O =t- (2 (k• ) + ) ,r

The derivative of this functional along a trajectory of the system has

the value

X t(~ ) (t) Z (aZ kI- x(t-2?kt -r
.1'. 61 k=O ttk
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x t(t 'T r)X(t-r( look~ (CA x (khit-(2ke1) I

k=O

-x (t - (2(k+l)+l)-r)x(t - (2(k+l). +)0,1).

where P x(t) may be reilaced by the right hand side uf Equation (4-6).

Before making this substitution, however, we rewrite this equation as

V(x d x P(t) + L a t) W (t)

o

Z_ % t-2k )xT - ATh

k~O
- t (2+) )(t-(k1

t) 1  xt(t- 2( ) lvt -

.0

- bI tI t - (2k+i)k )(t-(2  ,.))

53J
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+ ~ ~ xx (t) btIXxtt

eik=O

b (1 - lpt ) lpt ' t(t - 2k+l)rt) X(t 2(),

+ Z Z[2, pk-~)N (t - kl.

-b (1 pl )IpIl x (t 2k+)- ), (t 2(k+ )rTt ) ]

+ ~-(t, + t(t

(t Ztnxt



7

for some t*.U, b-t u i p1i bI 0. Othf:rwi0.', we .ha l] require s > 0

and bt > 0. That thc iu an appropri4t., rhoice of a t and b for these

catea can b,- ;a-n by r.parlng 24uativn (4- ,) ith .r Lyapu.uuv functional

V in Equation ()-I). If M4 0 thpn the terms involving x(t - 2(k+l)y)

ar nut present in Equation (4-6). Similarly, if N, 0, the terms

involving x(t - (2X+1)i ) are not present in Equation (4-6). Thus, for

such values of we have no need for the terms

00 -2ki

at Ely, fPt (o) 40o) dc,
k=O2 +I

bt jt() -4(c) do + ~ ~ k t 0 q(o) do}
t K- a- o- (2(k+ 1)+ 1, ) -t &

in our Lyapunov functional. We also notc,by Lemma 1, that -ag 0 if and

ony 1f = 0; and b 0 if and only if JIN N t1= 0. To avoid awkward

notation we shall use the following o-ventlons: the symbols

and E

denote 5 umatcis over -)n.y those tt- for wiich a/ 0 and b9 0,

i ,:spectively. Thus,

t t

"x~tt ; , t(t) at.  ' bntx +
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t(. k=O

Butt then,!) uain Lemm 2,+ehiv

-~V )-b x~ Ct ) xt :<(t ) B1 2*(C~ tA

d V(; -T ; () Q4 t(t) Bll+
d-L t3 (56

It
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-t .., _ __1€ , 1;

(t) 1 + L X

b 0t pt )'

Thus,

t~ 0f
For all yt c x If H tt

-

1  b] In b + + It: r aII xa In n( <t

+ b 2 tii

V- Vtj 0

D r al 11 I

'7



d -t

+i#,um t1 I, zl

fop rlt a I - G}{ x j 0. Itn ord,:r to obtain conditions for ensuring that

V(x t ) < 0 that are in general us weak as possible for this method, we

shall now choose tht- vonstant.; a- 0 and b > 0 such that

and

[t) + N lNi41l

iPr' minimized. The un:.t+on u(,s) s + k/s, k > 0, has a minimum for

> 0 fit S -rk; thpr.t'-+rv, it is -lear that we should choose

i't - -r Q " ' , a 0;

E. vf' r Q , b 0.

Oil .th( %%j t F we may Writ,.
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<(_ - x (t)[.A- * -r + )4

lIN Nttit

1t 1

DeI'ining

we note that

A. (

Cn

n .a
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Mt E

and,

t 2 t t 1? 2 t

ThereIorv',

[ to

11H.T)*.j II+Ii

-~~~ Z- LIilp '~i~r 1) 1

:lflce it iu easily shownl thajl, 1113 JI 11

tLi.t, A be a column vector. Since, for- any squart, matxrix M, tho '!ienvauuvu

of M are~ the squares of th. .vir owvrmilueu of M, at d ir o .leu~

d"fI nite t,_2MIJ a. memimum vigetvallue of M, ItA A~ rI-IA A" ). 11 A A7 )(A

I!1A(A A)A'II. Let a' " IlAll' AA then hIA Atl 7U IjA'17 LAIA ALI
(leIurly a > 0). Thuz;, IIA A t * 11I% A AtlII* fIA A'I ' 11.z ALIf j 0. hoU

iI[JA At' II 0 then trur.- A At u (atice the tracoe 'qui ! Oi l tta of' thv

*'rVl of A At); but, .uv At',AA a 2. V!.. 11A A8 110 >a

Tht: , "A A t ai; or, 11A At: JII: , Q .E.D.
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( !l''IC 11 + H" tI .c, II)-aiBtr
(1 1) for

%0

0n

L1

we have

d V(t) - < t(t) [A-B AO +EYE E t 
+ (tr 'I)I]x(t)

+ Xt(t) B B*(CIx(t)). (5-)1

We may also define a functional V on C* by

UO j -2k-r
- - k t (a) 3) -av(q) - (o)P (o) -Ei1%1 I

A

0 (2• ~k+lJto 1()do
t(o)-(o) do +d

o=- T t k=o =-(2(k+l)+ )i t5 5

Equation k'5-5) 2s identical to Equation (5-1) except thi-t the ?irst pluss

-;ign is changedi to a minu6 sign. Proceeding in exa.-Ily th,- sam,. manner

as above, with the use of Lermna 3 instead of Lemma L', one oirily obtains:

dt V - ' •t

X t [ x A(t rC , ( ) .I'F- -

"ti J i,'octes the tract, of th.- mitrix T.
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One may easily show that for any H > 0 the functions V of Equations (5-i)

and (5-5) are continuous and bounded on C11 this is done in Appendix C.

It is also obvious that 7 of Equation (5-I) satisfies V(j) > 0 for

We now state and prove the basic stability and instability theorms

for nonlinear distributed networks.

2. Stability and Instability Theorems

The following theorems apply to any network in the class of nonlinear

distributed networks defined in the previous chapter. That is, we assume

that conditions (Al) through (A4) of Section 4-2 are satisfied by every

network for which these theorems are to be used.

Theorem 1. If

2-It E + bt Ila

(21/kb )p)1/2, where X is the smal'est eigenvalue of the matrix P,

and if -XtA - B A C + E~ t + (tr TlJR + itBj(C2j) < 0 for

all xin a neighborhood of the origin G. = (-X .XC En, 11xi4 < K),

then the solution x rs 0 of' Equation (4-6) is stable. Furthermore, if

tLA -B A C + E T t+ (tr T)I I+ ;xtB V*(C -) <- 0 for all

X t GK, X O, then the solution x = 0 is asymptotically stable and

every solution of Equation (4-6) with initial condition x in CH approaches

zero as t-'-c.

Proof. Let the continuous 1"-nctinnal V be defined on C* by Equation (5-1).

CP(.Frly, V(5) 0 0. For th.e liven 1, let U denote that region of C*
3



where V(j) < I c Luy ,(1) 1-0 ,.h II0o)II? < (o)P 0)_ v( ) <
1/-2

IjI((o)II < (21I,) Let u(s) be defined on [0,K) by u() 2

Clearly, u(s) Is continuous and increasing for 0 < s - K, and u(O) = 0.

From Appendix C we find that 4) E CH - V(j) < 1, and hence C c U. Clearly,

u(Il(0)ll) hXi(0)ll2  v(p), for all -T C U1, as observed above. According

to Equation (5-4), the condition that A - A E t + (tr T) )X

4 x B *(C X) <0 for all -X' CK Implies that 0-p)( ) < 0 for all q E U.

Hence, by Theorem 2 of Section 2-2 the solution x 0 of Equation (4-6)

is stable.

The condition that ;t[A - B A C + E T E + (tr 'VI ]x + U*(CIX)
Y1U a a n

< 0 for all x C GK ,  , implies that M, the largest inv-riant set in

R (the set of all points in U, where V(4 -6)( ) 0), contains only the

point 9 = 0 Thus by Theorem 1 of Section 2-2. every solution of Equation

(4-6) with initial condition ;o in U, (in particular, all xo E CH) approaches

zero as t-*. The solution x = O is therefore asymptotically stable. Q.E.D.

Theorem 2. If xt[A - BI A C- ET Et - (tr T)In]X + -tB T 9*(C > 0
U 13 B! 3

for all x 9 0 in some neighborhood of the origin, G = (x E x.r
iil ! y < HI, then the solution x 0 of Equation (4-6) is unstable.

Proof. Let the bounded continuous functional V be defined on C11 by

Equation (5-5). Let UT denote that region of Cr where 1 0)t(o)P (O) >

ISee pp. 110-111 of reference [37].
LThis is seen as follows: Clearly (O) is an invariant set in R. Now

if q6. R then -(O) = O (since WT. (, 0(0) )0 0 - (.)(t) < 0). Suppose

q. M; then, according to the definition of an invariunt set, 3 o function

x, defined on (-m,-), withx t  M t in (-aoo) and x., q;. But. then,

for all t < 0, xt  M c R xt(0) 0). That is, xl't.) '7 0 fk<r <' ( t < 0.

Hence, ( P .
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El Z~ du b ] t(0) i{o) dat" =o o -- (k+ 1)¢ o,-r

~-(2KXi ) .

-(2 (k- 1)'t
k-0 o,,-(2(k+ )+Il

that is, Ur denotes that region of C where V(q) > 0. Now, since (z

z E z > 0) is open in E, and since V is a continuous mapping of C

into E, U , is open in C Thus, 3 an open set U in C such that

Vc) ' 0 on U = T f C . Clearly, that part of the boundary of U,r

cU, which is in C consists of the collection of all those points p in

C for which V($) 0. It is also clear that 0 belongs to the closurer
of u =U n C , since O C C., and V(O) = OO* 5 C 6. Let us define the

, 11 2

function u's) mapping the interval [O,H) into E by u(s) = ?ps , where

kp is the largest eigenvalue of the matrix P. Clearly, u(s) is continuous

and increasing for 0 < s < H and, u(O) 0. Furthermore, u(I1(0)) -

c _(.O)112 > l ct(o)p)(0). Hence, V($) _< u(1II (o)Il) on U., W n c
According to Equation (5-6), the condition that xt(A - BU A CU - E1 It Et -

/- f) T n x + BtB U*(CIx) > 0 4 x r G, x C 0, Gmplies that V. 6 )() > 0
r

on the closure of U Y ) n C., and that the set of c in the closure of U
V V

x:-r-' that V, 67 () 0 oontain- no invariant :et of Equation (4-6) execj!

0. Thus, by Therrem 5 c:' Ser-tion 2-2. the soluton x = 0 of Equation

(4-i Iis unstable. Q. E. D.

,veral corollar', : to . uove theorems may also be stated. One

•, ,:; a trivial pro-' i"

, existence of thu open, U fo lows from Tht,.r,'em ', , page >1, of
"rne 622J.

65



Corollary_ 1 compete Stabili t). If conditions (AS) and (A4) of Section

-4 t4-? hold for all H > 0 and, if [A - B U A CU + E+ 1 E U + (tr Y)InI

-t n+ x B.D (Cx) < 0 for all x _ E , x 0 0, then every solution of Equation

%4-6) with bounded initial condition x E C approaches zero as t--a

and the system is asymptoti'al,, rteble in the large (completely stable).

Pronof, Lint x be name bounded £nltial condition in C. Then, 3 H > 0-- 0

such that 11;o(t)Ij < H for all t r (--,oI; that is o C C . we may use
00 H,

this Value of It in Theorem 1. QE.1).

Before stating the remaining corollaries we define the concept of

a critical poiat of a mappihg f from E to E 1. and state a well-known

theorem and two lemmas.

if f in a differentiable mapping from Eto and if for x E
0

i3f/ax( ) 0 C for i = i, ... , n, then xO is said to be a critical point
1 00

of f A theorem which is available in many references [8 p. 62, 59

p. 61' is the following:

Theorem. If f is a twic( continuously differentiable function mapping

n -1a neirphborhood N c E :,f x into E and if x EC N is a critical point0 o

of " tLen, if the quadratic form

n n d 2 f 

i ha 

) kOx. Ox, (o i j

.: ie definite, 1' has a :;ri7t relative minimum at x that is,

the.,', ,xi tt. an open :it ( .N !,, aining % seich that G,

.h- yptheses of Th~ri!rm:t and 2 of this section involve conditions

_ un.tions f of . *(.r-rr, !'x( - xt + Q x I B *(C I), where Q is an
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n x n matrix, be ronnegFative or nonpositive In some open set G contain-

ing x = 0. We may use the. above theorem to give conditions which may

be easier to verity. We tir.t. prove two simpLe lemas:

Lema 1. Let f(;) _ x Q, x+ -64(C f) ir

I I

denotes the matrix whose i-jth element is

x then q '0+'~ Bl 1"(5)' + Qt +

where P"(5) denotes the Jacobian matrix of the mapping PW, evaluated

at 0.

Proo f
-t -xt

....t 6t x
=Q +  Qj + [ *')(C]j) + tB i 4'(C)C 60 1 , a X x a 1j JX

a i su,

0x f x Ox dX at6
Ox. C!X O Ox Ox OX I' dx, ax0 i *CIf~C

qj + qij + '(La T'(O)CI] j + [B *0(O)C ]

C-i ~ ~ j ci B305ci ij

Hence,

[j7Tx (0)] . 'Q Q + I

Q A -B ,C _ E (tr i)I
1- n
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Lenna_2. The matrix M M M is positive definite if an' only If M is

[xsitive definite.

P1. ("if") Pcfor thia part 11z trivial.

("Only if") Let -t( 4 t); > 0 Then, x + tMtx >O ,2; t > 0 -

-X,) > 0. Q.E.D).

Lemas I and 2 prove that if f(x) x* x--t * xtIB*(Cx) then the

matrix E 2f (5)]

is positive definite if and only if the matrix Q + B"*1(O)C1 is positive

11-finite. We now state corollaries of Theorems 1 and 2:

Corollary 2 (AsYmptotic Stability), If, for all x in some open set

-ontaining the origin, GK : x C En , 11-4 < K), the function ;tBi *(C X)

mapping GK into E1 has continuous second partial derivatives, and if the

matrix -A+BAC -E T' (tr )I - BU*,()C,, where ( denotes

the Jacobian mat-ix of the mapping I* evaluated at the origin, is positive

definite, then the solution x - 0 of Equation (4-6) is asymptotically

ntaole.

Prc-of. Letting f(x) - [A-B A C + E t + (tr ')Il - t -3(C)U a  a a n I ±
we see thnt f(O) = 0. The hypotheses of this corollary imply that the

quwirati.oc form
n n 2 f

in pcsitive definite. Clearly, (s,:e first line of proof uf L -nma 1) 6f/ox i .

:at i ", ... , n, and thus, x 0 is a critical point of f. Hen:':, by

"."- vi- theorem, there cx, ... an plen set G - , :ntainin? x 0,
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'h that x G GKt' , f' .2) > .f() Thu. by Theorem 1,

Zh; Ulution x 0 of Eqt ,in (h.) if a yMpt.ioly nt.nble, Q.E.D.

Ccro|lryE 3 (Instibility). If', for all x in some open set containing

the origin, 0 = (x x ', II II < r ), the funr7tlon H i'(C ) B*pdn I

G 1 nt~c E IhnKctl~~i r---~ d partlal dcrlvatlv -n -ard If th- Mttrixr

A - Bn A C E '*E - (tr +)I + H B*O(F)Ci, where '*'(O) denotes the

Jacobian matrix of the mappint 1* evaluated at the origin, is positive

definite, then the solution x 0 of Equation (4-6) is unstable.

Proof. The proof proceeds in the sme mariner as that of Corollary 5.

Q,E.D.

We now giv( several examples of the application of the ubove results.

5, Example 1

For our first example we .onsider the distributed network of Figure

which was examined from the viewpoint of linear network theory in

Chapter I. The network is redrawn in Figure ",.] to show explicitly

that it is a member of the c-ass of networks having the form of Figure 4.d.

116'e that we have replaced .. rs,.istor r whi:ch .w& chltraf'terized by

, equation i = i7 by a laff.-,,d memoryless ncnli-:ar clement harate: ... +d

L;y th equation i f(v) W,, r.zume that the ':. 'Anrn f sa tistfies a

L'...chitz condition 4r. som, r'ighborhood of v = 0, and that f(O) = o.

Ti. . the resistor r of' Cnap ,er 1 is but a special cast- of the type of

.i,.it we shall -'rn, d. " r this network Equation (4-1) and (4-2)
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~~I +
Irv-- '2 :-

Figure 5.1. Network for Example 1.

[c1i(t) * [0ox(t) [ [-i 1 1 ()

v (t)

[L~t 0 jL0 0 I/RJ vnl(t)

lh i, P CC), A - [0), BT-  [-IL, B -an O10, B [I], B1 - 01,
c' c (I] Oa  l O t, c I, [ c - [o , DI  - [0], 1) -10],

' ] Also, B[ ;4(( x) -'(x Q ( 5 1, and

TO



I4 i)Li~111, x4 = i to) to] t[Cto)

II

, • f[ to = to ) , N = [o ) t: -to ,
Mii

where,

-z 0 ) / ( R + z-
1 (o + Z) +

* 
-= rs8  r~ = -1 = -001~ zi 0H R o/ + Z o

The furctionaldirfercntial equation which governs the behavior of this

network is.

Ci (t) - *r(x (0)) x ~- (t) -2 k fz V )x (t- (1).

This Is Equation (4-t,) for our particular example. We now find:

,"%bu { 1 0 . I,
B A C f i ol

-B 1 { 01 ,

, 
.,
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Hen,,',

Thu4. by Theorem I of Gection -. , Ur' solution x, ' nic1l~y

atabic if there existi3 K > 0 suh fho

-, 0O 4 ))>0, when 1xj ' K,

In a similar mainner, we may apply Theorem 2 of Secti, - to obtain:

The origin Is unstable if there e ri u T> 0 such tnat

''((R.i-+ ZI + =~o r'(X 1 2' > 0, when j
1 Z0 (R+Z0 R 01 x XI<

These criteria may be t:peclfi' A gr.'phically a:i in Figure ).2. If,

in tome neighborhood of the origl.:, 1h' function V lic:: within the open

F 4-7 r fnr Exan..

7 2



t'i ion iabelr~i stab it' in i.~rr 1) 2? (aa curve dof'4;) thon 'he

fqullibrium solutiun A I  0 anyaptotleally stablv. Ir, in some

n,ivhnborhfo-d of the origin, f lies within the o , n rrgior labeled ustable

(.-)rYP 1z, for examplc, tt zolutlon x,. ii; witbe!. ir the

function f lies within thc remaining region, 'he solution x] - 0 may or
nay iot be atable. AIm,, ae',crling to Corollary i of Section -2, it

for all xl, f(x,) Iles within the open region labeled ntable, then the

solution x, - 0 is complettely stable. It was mentioned in Chapt(r I that

reSi'lts of this type would be obtained.

There are two cases to consider in determining the &tubility and

instability regions of Figure 5.2. It R > Z o then the straight lines

i and A2 are determined by the, equations

I 2X1 0

i1x1  2 -

L o

=( (- ) xz.

z
0

It; -use R < Z, then

x (X
I I,?.

<l  (- )i.

An mentioned in Chapt(,r 1, w,', note that as Z°  the lint- , and .
0

both approach the line i(xI) (-l/R)x . This results in stabillity

ur, Instabil.ty regon.; w.h ih approach those shown in Fg.g-'re l.3a. One

w';l expect to obtain. :;. h :"n for the lu-d n,,twr'.' of' lgur. .,

i i/ng no tranomicsion 0i1'. Of coure, when Z -, the nr-work of'

." , :.2 is equivai.tn', to 5.'h a lumped netwz'rk.
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I. kamyle 2

In this xample we consider a network which contains two memoryleus

nonlinear elta'nt*. The network, shown in Figare 5.3, connint of two

lumped networks connected together by a losless transmission line. The

lumped networks are identical except that the nonlinear elements are

characterized by (in general) different functions f and f and the

values of C and C need not be equal. We acsume that f and f satisfy
I 2- 1 2

Lipschitz conditions in some neighborhoud of the.origin, and that f (0)

f 2 (O) 0 O. For this network Equations (4-1) and (4-2) become:

i _____________

2*

1 2.

f (V

Figure (.3 Nclwor.l for 2xample 2.
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rc 01 F-/R 01 F1 0 R -0

I 1 I+
v Wt

vgtW 1 0 0 0 0 0 'a (t)

v"t) 0 1 0 D o i02(t)

i Wt -I/R 0 + 0 0 v14-(t)

R 01vc

where, i (x11x 2)t. Thus,

p : 2 A BI B :a /E 1
C t1/R 0J 0  1[ -1/RJ 01 [ 0

.1+l r [11 Also,BU(

(2':':) ~ ,Q ,and (letting 0 I/R, 1+1)
2 T5



G[G0] -[G;N. :i 0 -b0:l -G)0]=[ 0~

22

0o1 0 [:
NQ 2

(0 -G1 [ -G 00  0 [o0
N e i c 1 N gI 0 1l

where,

1 + g 0 Y o g 1 Y o

(Y -g)/(Y +8) (Yo-g)/(Yo+g)

0 (g+yo)2 0 (g+Yo)2

-Y
0

ei V (g + y)(g + Y)

(Y -g) (Yo-g)
S - (Yo+g)( Yo+g)

We now find:

G g+ o 0 -G 0 0

BI 2 L o]C+) =][: =~ G2]( +Y 1-
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ogy" 0l (g23

I _~ -gi )2(.+)

Y'2ly 2g + (Y 0 +g.)

0Y g y g (o g) 2 j
0 . D~0

Y G 2  ly 91-g + (y +g) 2 l 9 +.-9
C (Y+ Y~ 0 ( .--+)2l

T0 +Uo Y0+

&nd therefore,

(trYI)I z2f

Hence,

A-B A C +EfE + rl=A+G2A+Y

+ 0 2(IYO.gi + Yo4.) g

0 0

I g+Y0  4 g ( y0- +Y00 0

2g3 12+Y

-+ 0' 2g. 2 1
ifY

00

-G-G



Thus, by Theorem 1 of Section 5-2, the solution -

is asaMptotically atable if there exists same K > 0 such that:

When Y > ,

X( _ o p.2) xj + t 1 (Xi > 0 , for tIX j<K, J-1,2

whpn Yo-Sg,

2

(I0 - I + f .(X. >0, for Ix.<k =1,

Similarly,

A B L A C - E aTE - (tr V)In - A + G2 A- 3

G+eI ,Iog o+ 0g+Y 4 YL G + +G + I + g )

LG+Yo" 4  g-  Yo+ g

-- _22 2g

1 L g+Yj 2g I

oG-. 0

2 g-Y J
rhus, by Theorem 2 of thin j- , the solution x is unstable if

"hp:t exists sme > ;;u'h lh :
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When Y>g

2 2g-5Y
x (to --2) P - I .j x Cx) for fxj I< r

When _ 0 5g,

[ 1 to ( ) + 3 + f (x)) < 0, for Ix I<r, J-1,2

As in the first example, the above criteria may be specified graphic-

ally. We may draw a figure, identical to Figure 5.2, and require the

curves of both f and f 2 to lie within the open region labeled stable

to ensure complete stability of the solution x - . Similarly, if

in so neighborhood of the origin the curves of both f1 and f2 lie

within the region labeled unstable then the solution i = is un-

stable. The lines I and 12 are now determined by the following

equations:

If Y >  g o then

(x = -
xG -g ( g )IX

j  - -G- 2---3Y
2(xi g+Yo0 2g

If Y 5 g, then

2(x I 1 I~
2 ga.Y

0

I (x ) -[G + )I2 j2 g y j

We note that as r -* 0 the lumped networks tend to become uncoupled

from the transmission line, and hence from each other. Also,
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z-o Q- S-. a, and each of the above lizws approaches the line

J(xj) - - Such a result is satisfying sinct when r - 0

our network becomes two simple networks of a type already considared

for which, f(z) > - Gx , complete stability and, f(x 3 ) < - 1

instability.

If, in this example, the two nonrlinear olewenta were not

independent of one another, it might be more convenient to use

Corollaries 2 and 3 of Section 5-2 to determine asymptotic

stability or instability of the solution - {. Suppose the

nonlinear mldtiport of Figure 5.3b is characterized by the equa-

tion

VZV
where ( ) - , and D satisfir-s a Lipschitz condition In sce

ne'ghborhood of the origin. Since D 0 we have 9 a B It

would, in general, be rather awkward to try to obtain graphical

stability criteria as before. If, however, for all i in some

open set containing the origin, K  : En , I,;, < KI, the
K

function x% j (C1 i) has zortinuous second partial derivatives

&ni, if ( ) denotes thp Ja -bian mAtrix of thf mapping

evaluated at the origin . then, acording to Corollaries 2 and 3

oi --:tion 5-2: If the a.atri-y

2 "2 --7 Y "Y+gF~ F+ i ;+

C; G2 ~ 2 IIY-g1 0+

G 80 gY yoC



P" j..itive 4fli;t,; , Ow- W4.0un i - is asymptotically stable. If

f.hr maltrix

~~~I -g + _____

C ) Y' 0: +g Uo

is positive definite, the solutiom - is unstabI , Such criteria ,

these, even for a much larger network, should not be too difficult to

verify, provided that adequate cLaputing facilities are available.

). Examgle 3.

In this example we consider a large network consisting of an

-rbitrary (finite) number of voltage controlled nonlinear resistors,

hax i. , capacitance in parallel, connected together in an arbitrary

manner by losaless transmission lines having lumped resistance at each

ena. The elements of the netwo" are shon in Figure 5.4. We assume

tha' all transmission lines in the entire distributed network have

"n..-ae characteristic impedance Zo . The parameters a and £, however,

may De different for different lines. We let n denote the number of

Figurt. ',L... (a) Typiala lumped net'r,. (b) ?,-.i,-ai
-i>r. 2t i ag n cn'
81
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Fi

lumed networks in our Iarg dizoLetbuted network, and unr the subscript

j, j-l, ... , n, to denote each particular lumped network. W denote

by the po, tive integer k the number of intrtconnecting lines which

are coimeeted to the 3-th lumped network. In Fige 5.5 we shw a

tpical lumped network and the lines conne'ted to it.

_ ( - ... __t2 )

• ... _ (kj

-- ,--I

j

Figure 5.5. A tYpieal abnetwork for Example 3.

The Kirchoffts voltage and curren . law equations for this subnetwork

are:
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%(~t)j

V(l)(t)

Ccik(t) - [-k /R)x (t) + t-i lOt . it]

v(k

(t) YO

) -t -....-

-x € v(t)(+

(j)(,
(t' -4/I). (t)

For this example, the lumped linear multiport of Figure 4.2 con-

slsts of the collection of all lumped linear subnetworks of the

type shcwm in Figure 5 Thus, for the entire network we have:

[C) cj Lo/R /
Cy 2 0 i(t) " '1(2 ;(t) +

LO Ij 0 './n. Zla

0 ~1/ft... /
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1* 01
0*.

C I

(5-7)

where

xa(X1 , X2 0 ... I xn)

and

Equations (5-7) are .rt rv easari2.y ir, thv ;,tv: furm ha~ Equations

(..-l) znnd (4-2). This ini b4-must the elements of ii~y and'r w~j

-.my nol. be in the proper nvrr &Z dAefined in Chapttr "Z' to*+; us inivesti-

ratc this matter: Since each tranerisson line ir hIv A.itrtbIte network

i~cto a poirt :,f 12Lnpu 'Linear multip'r w h vhI-.h 11t port



voleLage has been chosen sr IN, independent variable, ttw vectoru

and ; of Zquationa (4-i,) n (h 2) must, accordiv, to Chaptcr IV,

be uf the form

an - e nee

It appears, therefore, that we need only relabel the port variables to

give u and w the proper form. Things are not this simple, however,

since this relabeling cannot always be a:coriplished. We see that

the voltage variables in the vector u occur in groups such that all

voltage variables associated with any lumped subnetwork (e.g., the

J-th subnetwork of Figure 5.5) appear in adjacent locations in the

vector u . Hence, if these variables could be relabeled as required

then at most one subnetwork would have some of its independent port

voltage variables contained in both of the vectors v¢ and v. Con-

sider now the following counterexample: suppose there are four

lumped subnetworks and six inter.:conecAng lines. Let tthe. inter-

connections be made such that each subnetwork i connected to one end

of three different lines, each of which is connected to each of the

other three subnetworks, as indinated in Figure 5.6. If at most one

Figure r.6. :;'"r .)unterexam-.
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subnetwork has sme of its independent port voltages in both of the

vectors ad then the port voltages associated with at least

two other subnetworks are all members of either or v0 . However)

since the port voltages associated with each end of any line must be

labeled, on with an e subscr±;t, and the other witn a Q subscript,

it is clear thpt if any two subnetworks are considered, all nix of

their port voltage variables cannot be relabeled with the c sub-

script. Similarly, they cannot all be relabeled with the Q subscript.

Arriving at this contridiction proves that the proper relabeling

cannot be aeccoplished !or this network.

In order to put Equations (5-7) in the form of Equations

(4-1) and (4-2) one must, in general, rearrange the port voltage

variables in the vector u , and similarly rearrange the elements of

w . If, for each line in the distributed network, one end is chosen

arbitrarily ad the corresponding port variables relabeled with an

e subscript, and if at all other ports to which a transmission line

is connected the port variables are rf beled with a 0 subscript,

then the vector u may be put in the required form by simply rearrang-

ing several pairs of its elements. Performing the same operation on
.a

the vector w will put it in the required form. let U denote a

matrix which performs this rearrangement operation on the vrctors

and w . Ther --

saul , bof Uw =- (-8)

'. hall now briefly ir.v stirat" to~e natu re of the matrix U.
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p.7

!

If cne starts with the identity matrix and Interchanes thbe

i-th a e, the J-th columns, the resulting matrix UW, when pi elti-

plying any vector, will give the origial vector with the i-th and

J-th elements interchanged. In the same mmer, we ay construct

a ratrix U which performru the operation of interchanging several

pairs of elements, by interchanging the corresponding columns of the

id.ntity matrix. It is thus clear that U is nonsingulir and, more-

ovvr, is its own inverse, since UUi - 1 for all i. We also note

that if A is a diagonal matrix, then UAU w A.

If in Equatio (5-7) we define

0 0  '' -k/ 0 ' 0 ]
2 2 ~ ~ iI /R..1f

' .-1 0 -),1/R .... 1/RiK - oilo
01 0 0 1J R ,I

-1/ I I

1/-1/l R

• ir87I
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and if in Equation (6,-)

U= 4

0 U*
then, since u - uA and w t: t , gq~wations(97 becoam

and hence (noting UDU D*),

P;(t) Ai(t) + D (t)

These equatiom are in the form of Equations (4-1) and (4-2) if we

define

B B U=[B BU)

1 2.

Now, letting G -/R and = +

1
g+y ,

0

Yo Y Y+g)

IA - (g+yo)2

0
-gy 2 ~--

(yo.)2

g , for all 9 .
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A1so, " t~i IIC~tj G for all a o and, hence

Thus

BU A C - * U. ?U% mE B*ACa

Q ~*1...l/R
"-1/3

11 ©i ... ,.0 "
-1/R

.. . 1 0.

R R

• /R

0 -R/R.
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where X~ (&+Y
0

Siilarlyt, since

(g+y)0 (g+y0

1- (yo.62/(Yo)

m 0 , for ante2,,

.t 2 IY,-gi + YO.,

9~~ gX- + +" 2 n

O2N 2

where N idenotes JIL total nr~w.er of Uinfs Ir "he~ Prtir-~ distributed

retcvr1k. Therefor,.
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A i AC E,1 + (tr TI,- A +* k2

n 

k +2Nl

0 
0+2NI

For j c I, ... , n, let

kG ( + |  Yg

Then, if Yo > C

L!

0j- -. G- 1+ ¢ ~~o 922

Az r-* 0not tha I'- GYadi qutos(-) n i)

k G (k +2N )GG - 11+ + N +g--
I Io 1 0

-k -k = ,./R. Causinr r to becoe small bs, of coure, the

.. i,_ t of t.r, ing to wmcouple the 1iumped circuits from one another.

a7 have, 91

mm'N ) 2 mm o- Im mm Ym m m m



A - £A Ca - ST? (tr 'V)I n

-b

2

-0 '
0

kC)2 (k_+2H)2 Iyo' + Yo+gq

n _________

For j 1, ... , , let

2 2
q3 . kO (k + 2N )G IY0-Bi+ Yo4)

3 g+Y 0 go +

Then, if Yo

r2I f G2Y

if Yo <g,

0It =g -k G G2 N G20(-2

qjvK3 G 2 (g+ 0  j g4T

In Equations (5-11) and (5-12) it is also true that as r -*0,

-. -kJ/R.

Bz *(c-x) = B (CI X) - "
f nixn )

L- application cf Theoremc i and 2 of Section 5-2 yield the following

stability criteria: The sol.ution x - 6 is asymptotically stable if

there exists acme K > 0 such that x f-p x + f (x )) > , tor

92 J .1 .i
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< K, j 1, ... , n, where pi is given by Equation (5-9) for

Y > g, and by Equation (')-10) for Y tC g. The solution -OIs

unstable if there exists sont ), > 0 such tha. x (-q X 4 f C(X 0,

for I<r, J - .. , n, where is g, ven by tquatin (0-i)

for Y > g, and by Equation (5-12) for Y, < g. As in the other

examples we may specify these criteria graphically. For J - 1, ... , n1

we may draw, as in Figure 5.7,

f i'k)

stabl.

j. xq xi

4.- ..'

Figure 5.7. Stability criteria for Example 3.

regions in the x4f7 (x ) plane. If f lies in the open region

labeled stable for all x/ / 0 in some neighborhood of the origin,

the solution x 0 is asymptotically stable. If for all x$ 0,

Sj) (X lies in the open region labeled stable, then the solution

X C is compl, tely stable. Similarly, if ft lies in the open

region labeled unstable for all x1 j 0 in borne neighborhood of

the oriein, the. soluticn x : is unstable.

We hay., r;ote4 that as r -0, each of the pj, qj approach

-k /R. This ir *xa:tly what we would hope to obtain since when
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r 0, the n voyed networks are wem **d wAn they are c mplotely

L-! stable if f (x) -k G. With our theory we have esabliehed

I criteris which ensure comploete stability (and instabiity) even

vhtn the 3.d networka arc cup.ed. Not.e that the c-riteria

arm independent of a and A for every line, and alo Indepen-

dent of the value of C for j. 1, . n.

94



Chapter VI

CONCLUSIONS

A stability theory for nonlinear distributed netvorks has been

presented. In the development of this theory three mmor steps vtr*

taken. First, It "as shown that the electrlPal behavior mt the Port-

of certain two-port networks containing lossless tratamisaion lines

may be described by a system of functional equations. Next, a class

of nonlinear distributed networks was defined nd it was shown, using

state variable techniques) that the behavior of any network in this

class may be characterized by a system of functional-differential

equations. Finally, a Lyapunov functional was presented and the

stability theory for functional-differential equations was used to

obtain several theorem and corollaries which specify sufficient

conditions to ensure that the equilibrium state of a given network

in the above class is stable, asymptotically stable, completely

stable, or unstable.

It has been shown that the stability criteria that this theory

may specify for any particular distributed network are independent of

the length of the transmission lines and also independent of the ptuize

velocity ( 1/a) of the lines. Generally, the critcri are also

independent of the values of the reactive elements contained in the

network.

The stability criteria may not always be the bust that one

might hope to obtain. For example, in the paper by Brayton and

Miranker [10), which it;, at this time, the only other comparable
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V .:,'iry knona to the authors itility criterion fur t S rwtvrk

of Exmple 1, Ctapter V, io gjvcri.

They obtain: If

then the solution x is coauletely-Sttle. AlY aPPIi-4:3tiOn Of
Corollary 1 to this example,. we obtain: If Z6 2!. nd

f > (6-2)

or if £~ R and

2 z

Fthen the solution x* 0 In complgetely stable. It is maody shown

tt if the ratio B /Z is lesn than apprmxiaftely o 648 thenr

2 2
1,/P 2/ZQ > - 9/(t0- + It) and hence the '-iterion of Equation (6-1)

1a Cus restrictive (in tlerms or adasble Tu~ctlona t) t-an the

criterion of Equation (62. r cane the ratiu. . 124 in4 greater

than approitlsately 1. then H.'z? 4£ > -R/(5
2  Y rand hence

46 C

the criterion -of Equation (6-1) is. less ronhtrictive than thet

critn.ricn of £q~'ation (6.> if, however,

0.8 < R C

tlicn thie cri teria of Evmotion: < end (6- ) azt c eam rtrictve

tflin the criterion of htuAtior: (,. . For examp':, . 1V 7,- 10 a

an: P 9A, then our crittwit, mrply Complete otat.'llty jV r' >

ut; p Brayton and )4 Mrisnier' ,xiterion ~pAsowp)!w nMi

V!>-0,o,497.



Several I' Vitarc research along tare linen; of this work

;J.;t prove frAu' . iw A of all, it '.u!, be o4lguficant to extend

-Q 'j14&5 t4 ;irtr tYtw:~tttfhi:h =y LoczcA by fUnct~onatl-

iAifercnti l. eqlatlonu urnd hence, to which our stability theory might

" rTply) beyon.; thc c ns wld.h we have defined. One ouch extension

tpoce -ionn the .... of removing the rest,-Lction in condition

'Al) con- ernkirfg th, zvrun of transmission 'it o m of the atrix D.

If thin ',ould I V o, L, networka containing transmission inoac

t,,crminated ut o'c en! by only lumped memorylens nonlinear elements

.rould be aturliuJ. W 'ould study, for extample, the network of

?i1u ae 6.1, The atrwbility of the equilibrium stntt V 0 for this

network cannot te stujic.a by our theory.

) i fI_

Anoter.At. nonlnear Jistributed network.

Anotlor u. .', of our work ,,ignt be to consider

1: rkf .ontna!:.rf. tyi'{"::),f :A'tstributed elements tie'h are more

,'.:'al ta L .:j.. .... ., .unamission line;. A theory for networks

'.:i',tinn, [C > flw, r'.nple, should beA quite u30u1.

Th y tr ;," 1. . .... : . f .Ii' tion K -1) -' pr'obably not the

' -:; thnt k, - t.) % u, ,fu l ;tability theory,
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Of' course, the conception of Lyipunov f~nctionals Iz; i f an art

than a Lcience. If, however, one is clever enough tW finu ;ther

Lyapunov ful-ctiorAls, it shouid be rather routine to develop new,

and perhrps better, stability .'riteria for the class of distributed

netvcrks which we hnve defined.

Networks containing only lumped nMeryless elements and t 'kB -

mission lines (i.e., no reactAnces) can certainly also have stble

and unstable equilibria. A stability theory for such networks should

be a vamiiable contribution.

Finally, having defined certain two-ports by Aunctional equations,

one is lead to conjecture about the perhaps academic problem of devel-

oping a theory of analysis of networks containing what might be called

"functional elements". A functional one-port might be described by

an equation of the type

i(t) - f(vt),

where i(t) denotes the value of the current through the element at,

the time t., and vt is a function (the voltage across the elemernt)

on some time interval for which t is the right-hand end. Perhaps

the theory of dynamical systems would be the proper setting for such

a problem. Choosing the proper state space, and defining the order

o'" .omplexity for such networ s; does not, at this time, seem to be

.vivial problem.
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APPENDIX A

In this appendix we atudy some of the aspects of the problem of

locating the zeros of the function

(R 1 + Z,)e 8 - (P- Z0 )e'
Ys) +r +

The equation Y(s) - 0 is the characteristic equation of the distributed

network considered as an example in Chapter I. It is clear that

Y(S) = 0 If and only if

(Zo + ~ ~l~ o)es + (R -zo)l -r(R + Zole + r(R -zo),

or

[(r + Zo)(R + Zo ) + sCrZo(R + Zo)Je = [(R - (r - Z) - sCrZo(R - Zo).

Let u6 define z = 21s, and let

CrZ(R 4)
a n

1- (r + Zo)(1. + z 0 )

CrZo(R - ZO

2-r

5 .- Z0)(r - z0).

It follows that Y(s) = 0 if' and only if s , where r is a root of

the equation

(az + 0)eZ rz + 5. (A-1)

The location of the roots of Equation (A-.) has been studiedj exten-

:ively by E.M. Wright [',6j. We shall a(3zpt some of his te ,thniques
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here. We first transform Equation (A-I) into a simpler equation by

replacing z by - lnla/rI. Note that a/t - -(R + Zo)/(R - z) =

-11r, where r I& the reflection coefficient at the right-hand end of

the transmission line in Figure 1.2. In case a/r > 0 (i.e., r < 0,

which is the ce for the example of Chapter I) we obtain

(z A+ B)eZ z-A -B, (A-2)

where

Lj

2 Cr

B sk/pa - 2/vr
2 CZ0

Suppose r - -1.78, R = 1.42, C = 1, Z° a 2.19, v = c/6 . It then follows

that bnlc/-r - 1.55, A . 2.14, and B . 0.48. If we define the function

cl(B) by cl(B) - l.(B + 1 + VB2 + B) + + 2 B , then c1(o.48 )

2.03. According to Wrigt [5], if B > 0 and A > c(B) then Equation

(A-2) has exactly two real roots. Furthermre, all of the roots of

Equation (A-2) have real parts which are less than or equal to the

value of the larger of these 'two real roots. It is clear that this

statement also applies to the zeros of Y(s) for the above parameter

values.

We shall now show that the two real zeros of Y(s) lie in the

le*, half of the s-plane for the parameter values given above. This

will then prove that Y(s) has no zeros with positi'e real parts. We

first rewrite Y(s) as

Y( + SC + I r e2aS r

oLe +1'
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Then, if we define y 1 (s) sC and y(e r
r 2% e2TO

it follows that Y(s) - 0 if and only if yl(s) - y2(a). On the real

axis in the s-plane we have y2(s) - ( + r)2e' "

(e~ s - rle2' / (eL' + r)2 _  22
z 0 (e + r)

d-

Thus, r <o=; y,() < o for all real a. Since we also have y2(.m) -

1 , 2(0) = Li - r): 1, and y2(a) the function y2(m)_ O y2(o z oi- t I + , an R- ZO Yo,

behaves as shown in Figure A.1, for real a. The point a - a Is the

solution of the equation e s + r = 0. The important thing to

y2 (s) l /R

_8

17

Figure A.l. The function. y( and y2(s) for real s, when r < o.

note here is thAt y,(.) io :i strictly monotonic decreasing function
d

",;,ds y2 (s) is strictly .monotonic increasing for s> a; hence, the

.traight line y - - intersects this curve in, at most,

!.wo points. Thi. 1,grc<e: wii, Wright's results, In our case there
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are two int.metittons and they occur at approxinately a -0 .819 and

a - .0.242. Ma1t is, Y(s) has exactly rvo real zeros and they are

both negative. Hence, we have shown that for the parameter values:

r a -1.78, R - 1.42, C - 1, to - 2.19, and T = x/ 6 , the zeros of Y(o)

all have ae.Stive real parts.

wThe mn reason that Figure A.1 has been introduced in that it

can provide a certain amount of insight into the stability problem for

the linear distributed network of Figure 1.2. We shall not consider

this topic in great depth, however the following remarks seem to be

appropriate. First, we saw in Chapter I that an unstable network

was made stable by simply increasing the value of the capacitor C.

In Figure A.I we see that varying the value of C simply causes the

slope of the straight line representing y (S) to vary. Hence, when

1/Z o < -1/r < l/R, we can always make C small enough that X(a) will

have two positive real zeros. Conversely, as we increase C we cause

the real zeros to vanish and then reappear in the left half plane.

Similarly, we can cause positive real zeros to exist for any value

of C > 0, h/Z0 < - 1/r < l/, by &imply causing the point e to move

close enough to the s = 0 axis. This corresponds to an increase in

the value of r (v = at), which in turn is caused easily enoue by

increasing either the value of a (a = t' ) or 1. We can also

force the real zeros to occur in the left half of the s-plane by

using a zhort enough transmission line (small 2) :. by making a

small enough.

Let us now consider the location of the real zeros of Y(s) when

- 1/r > 1/R (the lumped network of Figure 1.1 is unstable if and only
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if r and have values auch that this inequality is satisfied, Oknce

1/r > i/R10*g < -o). rf r < 0, it is obvious, from Figure A-1,

that Y(s) will alWays have one positive real zero when - 1/r > i/R.

If r > OP then- y2(s) > 0 for all real o, and hence y(s) behaves

as shown in Figure A.2. Again, we see that Y(s) wilI always have

a positive real zero when - /r > 1M. Hence, if the lumped network

of Figure 1.1 is unstable, then so is the distributed network of

Figure 1.2.

St-1/ Y2 (s )!

Figure A.2. The functions Y1 (s) and y2 (s) for real s, when P > o.
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A WDIX B

In this appendix we shall prove that the lineur space

C( (-.,O], IP ) vith the coqMct open topoloa is metrizable with

metric p defined as fo.lows: Let (t.) be a sequence of real numbers

with 0 to <ti< ... < tk tk+1 C ... and such tht lim tk
0 k k

For a fixed real number b, 0 < b < 1, and for every c, C, let

- k
, mk , where mk - min( b , sup( W(t) - (t) :
kao

k-tk+ t< -tk 1). Since 0 S mk 1 b for all k, and since O < b <i,

it is clear that Z mk always converges and hence p(j,j) is veil
k-o

defined. We first verify that p is, indeed, a metric on C; that is

V q, ', e C, p satisfies the three properties:

1)o(,~ ~0, (,' 0 if and only if

2) p~ j4)

Properties 1) and 2) are, of course, obvious. To prove property )

we need the lema:

LM : If A, B, C, D are nonnegative real numbers and if A B B + C,

then min( A,D m i man( B,D ) + min{ C,D ).

Rroof. If D< B and D < C,

mia( A,D ) _ D < D + D = mini B,D + min( C,D 3.

If D < B and D > C,

min( A,D 3 D S D + = mrl- P,D + min( C,D 3.

If D > B and D <

mn { A,D ) < D S L + 1) * m.:,.,, B,D ) + min( C,D )
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If ) > l and 1)

min( AjD ) ! A _< B . C -m lnt B,D } + min( C,D ,

laving exhmusted ail jxwat , I ies the iem is proved. Q.E.D.

Now, for any k, if o is an nrbitrary point In the interval [.t,, -tk

then

14f(c) " 1(0)11 - IWOa - i(a) + i(a) . f(jJI < IWOa) " i(a)#

+ ji(o) - #(0)jI S Uup( 1Nc(t) - i(t)1: -tk+l < t - tk ) +

sup( (t) - (t)J : "tk+l ! t S -tk )

But, since a is an arbitrary point in [-tk+ 1 -tk], we therefore have

sup( W t) - COO~l : -tk+., 5 t < -tk ) 5 sup( 11(t) -i(t*

-k+l < t < -tk ) + sup[ li(t) - i(t)J: -tk.l t k - .

By the above le , we then have

min( b , sup( j1(t) - ;(t)jI :t+. j t c -tk  ) - min( bk , sup( Wt)
- X~~lI : -k+1 _< t < -tk} ){bspIit ():"xZ

< -t ) 1, for nil k. Thus, p(-,J) ! 5 p(,). Q.E.D.

Let S. denote the compact open topology for C. The definition

f !ac is given in the fir'.t footnote of Chapter II. Then (C, ac)

denotes the topological Gpace consisting of C with the compact open

topology. If p io the metric on C, defined above ( for any fixed

b, 0 < b < 1), let ,L dnote the metric topology on C. Then (C, % )

:.rnotes the topulotical ipa,.,, consisting of C with the metric topology

I If P C C, S% denote the open w-sphere about ,

:.orem. The p'e (C, ) Is rnetrizuble with the metric

.1efined abovt:
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proof: Let 11 denote the bas . for S. consisting of finite inter-

...... one of em-bers of Q (ee firit rootrote of Chapter 111). !t k

denote the base for %1P coniting of au open -spheres in (C i% ),

We prove that (C,%) = (Cvu ) by showi" that if 4 is a point in

an element B or , then there in a elent B of * containing
C P 0

the point j and contained in B , and conversely.
a

Let B] be a member of c. Thus, B n A(K U), where
t of a (

A(K19 Ui) is the set of &.11 C which map Ki, a compact subset of

( 1,O], into Ui, an open subset of En. Let j 41 Be. We will show

that there exists an open p-sphere about 40 8( ,), which is contained

in Bc . For i u l, ... , m, KA is compact in (-.,O]j therefore 3 an
0

integer k > I such that -tk* < t for every t E K . Also, [Kij is

compact in En . For every y i[K i 3 Y , 0 < &y < b k , such that

1Iy" Y-i < y " y" E U . The family of b /2 neighborhoods

j N y!2 (j) : y (KiJ ) is an open cover of [Kl] and, since [K,]

, ;:ompact, 3 a finite subcover N / ) . Y_ I

of p(K). Note that N8  (u ) U, for j - 1, . . et. e

MIn( 5../2, ... , 5y/2 ). Then, if E C S(, 6) we have that, for

k4l
?. 0- , k -1 min( b ,  <'p tl()-; 'I: "'+- < < -tk

k -2.< Z b k s up( tl(t) - (.,: -tk+< t <

X *-1 ."-.i



'-

Mk "i ,(; < ,, rore, v t. K, , mint bk j1 (t) - (t)fl <
k o

5 Bu b <b -14(t ) C Jl < 5, V t *K. Taus , Of$(t)-

= nfl(t) - +(t) + t- ,. f(t) - 1(t) - ff < + 5/

y j . y

min( b1, .I ) then, ( is the required 4-sphere, since

if j C S(4,p) and if t C K for any i . (1, ... , m) then *(t) 6 Ui#

that is f mapsK I into Ui, thus E Bc .

Let B be a member of . Thus, B =S(*,*) for some Cg p

and some > 0. Let c B . Since S(j',jA is open in (C,i% , 3

> 0 such that S( ,M) -S( ',W'); therefore, it is sufficient to

show that 3 a set of the form A A(Ki, Ui) which contains j and is

contained in S(@i) In case p& Z b kr , we may simply let

k:o

n A(K1 , U) = A(K1, Ul), where K1 - (t: -1 < t !5 0 ), U .E
i=l

A(K ,Ul) = C and hence contains . Also, if L A(KI, U1) then

k.o

k k4 Z b , then let the integer k > I be chosen such that b *
k-o

"(l-b)/2?. Consider the o lo~u interval [-tk , 01. Since is

continuous on [-t . , 0]. 4 t k-tk, 0] 3 5t > 0 such that if

- k < t" < 0 and L - t b, then II(t) " (t)iI < -- . Let

rk (t) dt.note t. pt: b, : ,Ldhborhood of t. C] e-rly, N tt tt

t It'- t 1 . ' L- .iLy ( N. a (t): t t - ., O , ) is an
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open cover of E-tie, Oi and oinc- [-tkj 0O) is compct, j a fInite

.ubcov.r ( to(t1 ), ... , Ns (t,) ) or (-,i. 0]. Fr i 1 i..,,,

l K tI S -tk, ) ). Note Uiat each K is

a cerVpet *mbbt of (--#0]. in fact, each K1 in cao aet subaet of
m

[-ttkO O , and clearly U Ki -- tk., 0). Also, if t L Ki then

N~t) ti) <  . For i x lo,- t Ui - I: ,

S- (t 1 ) cM ), and let A(Ki, U1) denote the set of &U C E C

m

mapping K1 into Ui . Then, fl A(K1 , UL) is the required set:

clearly C fl A(Ki, Ui); and, if f e A A(Ki, Ui) then

tIO(t < (~j 2 ("""d for tall t in- [ tkop 0)], and hence

-: 0-1

w k-k* k- O

m £k + k su ( u -W(t) -4t(t)11: -tk 5 t 5 0

g, or p(i) 4 tA. Tad hence n A(Ki ," Ud
'Q.E.D

s( , ) .z4o



AINDIX C

In this appendix we shall pove that the functionals V deflned

in Squations (5-1) and (5-5) ar continuous an CH for any H > 0.

The *, Por " H >b 0, if V is defined on C ty either lquation

(5-1) or Equation (5-5), then V Is uniformly continuous on 0 H*

Proof: Let t> Obe given. Let n. a n + n + ... + ne. Choose

the positive integer N1 so large that

a1 (-2 r ot < ,V t E and k > N

Choose the positive integer N2 so large that

b 2H2 -t T 1 .IP11 k+1 < Q and k N

Let N =,x NIP N2). Let T - max (T E a) and let

+) 1tpi
n = E [ 11P -(a t

and choose 5 > 0 such that , E C , ) HP j

s up( j (O) -(a, -(2N+1)T < a<01 i n( C H1

This is possible Sin,.e convergence in the compact open topology on

- O) is equivalent tc uniform convergence on every compact bubs,,!.

of (-a, 0). For every c ' C CH with (. ') <S

109



(V(,) 1(j] 2I '(O) pw() - 0o) Pf(oj)

i -2ivr ~ + b~t a ~( dc

+ ptIk+l f t)(d ])
~ t(Q) P0) -2kir-kr

dotl f b j~t(a)()o+b -it tCj) ~

0-(2k+Y

ko 0 =-(2(k 1)+)-t/

1*O J 0 2kkr

2kJ Ip~a) - ,a~
k-o Oa=2(k+1 d c

+ b /7 I(o) 2 -c + bj' t~c). ) - tiL1o~d

1 k+1 f -. 2

ta k o =-~* T

b, f 11910



+- 'I 
-w) 

-f~)

4.~~~ Z~a [afldu ~f.t~a

oN-1 -(2k+l)rg

+ b~ 29-0(a) - (~la+ b Ip 1  k+l f 2H 1( a) f (0) Oda
k~o

-2kr

+ ~ a~ Ip~YkfI 11p(a)fll - IIj(a)Ilj Ida
k=N

-( 2k+l2.ti
* b Z ki f1 I(~I - Ia2 2da

k=N a-2k1lLr

P ~O)LH. II (O) - ioj+ 1L flptj4. I(O) - (O)FOR* II

S N-i N-1

+ , : pZ k Ij r )2k bt f~)ir + bt ZF ( I 2.ct
ta k=o o

+ Z t El Zik (112 )2-r + b t Z p 1k4i (H2)2 r

t 2 k=N =

(1 (Hf11i C P + ptH)

*~~- Z bt~ -i + 'b't Ipt] 1b~) 2bIPI1

t E2

t~ 2Ht2EU ±

I.We use here th, j! ~ ()2
-fr(a 2H.I~o ()I

w.hich follows inumedi ately frjrn the ineqaualities 1l~ 11,; 07 HRI 1 :5
-f) anot'!(aI 2H1.



Ica

+ Cn' +

L1 ' 1~l'4Z4 4 2

Th&t i, E H f, (4 , - v()I _

Thus, V is uniformly cortinuour, on CH.  Q.ED.

Theorem. For any H > 0 if' V i efined on CH by either Equation (5-1)

or Equation (5-5), tht, there *xists a real number L such that

IV(9) S A for every CH ".

proof: L.et + b t~ PE)2

Then, if q C Cl,

,'*, - (2k+l )z1 I

22k

IV ' 2 1(- CU

L~ ~ b~r ~-(j2IkllrH 2

- . 2.E.D.

+ 2I I .
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